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In the definition (Listing 2.4), the member functions have not been placed under any
access modifier. Therefore, they are public members by default.

On the other hand, class members are private by default. This is the only difference
between the class keyword and the struct keyword.

Thus, the structure ‘Distance’ can be redefined by using the c1ass keyword as shown in
Listing 2.5.

class Distance
{
int iFeet; //private by default
float fInches; //private by default
public:
void setFeet (int x)
{
iFeet=x;
!

int getFeet ()

{

return iFeet;

}

void setInches(float y)

{

fInches=y;

}

float getInches()

{

return flInches;

}
}i

Listing 2.5 Class members are private by default

The struct keyword has been retained to maintain backward compatibility with C
language. A header file created in C might contain the definition of a structure, and
structures in C will have member data only. A C++ compiler will easily compile a source
code that has included the above header file since the new definition of the struct
keyword allows, not mandates, the inclusion of member functions in structures.

Functions in a C language source code access member data of structures. A C++ compiler
will easily compile such a source code since the C++ compiler treats members of structures
as public members by default.
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Objects
| Variables of classes are known as objects.

"An object of a class occupies the same amount of memory as a variable of a structure that
has the same data members. This is illustrated by the following.

/*Beginning of objectSize.cpp*/
#include<iostream.h>

struct A

{

char a;
int b;
float c;

}i

class B //a class with the same data members

{

char a;
int b;
float c;

}i

void main{()

{

cout<<sizeof (A) <<endl<<sizeof (B) <<endl;

}

/*End of objectSize.cpp*/

Output
9
9

Listing 2.6 Size of a class object is equal to that of a structure variable with identical data
members

Introducing member functions does not influence the size of objects. The reason for this -
will become apparent when we study the ‘this’ pointer. Moreover, making data members
private or public does not influence the size of objects. The access modifiers merely
control the accessibility of the members.

The Scope Resolution Operator

It is possible and usually necessary for the library programmer to define the member
functions outside their respective classes. The scope resolution operator makes this
possible. The following example illustrates the use of the scope resolution operator (::).
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/*Beginning of scopeResolution.cpp*/

class Distance

{
int iFeet;
float fInches;

public: :
void setFeet (int); //prototype only
int getFeet () ; //prototype only
void setInches (float) ; //prototype only
float getInches(); //prototype only
}:
void Distance: :setFeet (int x) //definition
{
iFeet=Xx;
}
int Distance::getFeet () //definition
{
return iFeet;
}
void Distance::setInches (float y) //definition
{
fInches=y;
}
float Distance::getInches () //definition

{

return flInches;

}

/*End of scopeResolution.cpp*/

Listing 2.7 The scope resolution operator

Step 1: Place the class definition in a header file.

We can observe that the member functions have been only prototyped within the class;
they have been defined outsidq./ The scope resolution operator signifies the class to which
they belong. The class name is specified on the left-hand side of the scope resolution
operator. The name of the function being defined is on the right-hand side>

Creating Libraries using the Scope Resolution Operatoi"

As in C language, creating a new data type in C++ using classes is also a three-step
process that is executed by the library programmer.
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/*Beginning of Distance.h*/
/*Header file containing the definition of the Distance
class*/

class Distance

{
int iFeet;
float flInches;

public:

void setFeet (int); //prototype only
int getFeet () ; //prototype only
void setInches(float); //prototype only
float getlInches(); //prototype only

}i

/*End of Distance.h*/

Step 2: Place the definitions of the member functions in a C++ source ﬁléf"(the library
source code). A file that contains definitions of the member functions of a class is known
as the implementation file of that class Compile this implementation file and put in a
library>

/*Beginning of Distlib.cpp*/
/*Implementation file for the class Distance*/
#include“Distance.h”

void Distance::setFeet (int x) //definition

{
}

int Distance: :getFeet () //definition

{
}

void Distance::setInches(float y) //definition

{
}

float Distance::getInches () //definiticn

{
}

/*End of Distlib.cpp*/

iFeet=x;

return iFeet;

fInches=y;

return flInches;

Step 3: Provide the header file and the library, in whatever media, to other programmers
who want to use this new data type.
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Using Classes in Application Programs

The steps followed by programmers for using this new data type are:

Step 1: Include the header file provided by the library programmer in their source code.
/*Beginning of Distmain.cpp*/
#include“Distance.h”

void main()

{

}
/*End of Distmain.cpp*/

Step 2: Declare variables of the new data type in their source code.
/*Beginning of Distmain.cpp*/

#include“Distance.h”

void main{()

{

Distance d1,d2;

}

/*End of Distmain.cpp*/

Step 3: Embed calls to the associated functions by passing these variables in their source
code.

/*Beginning of Distmain.cpp*/

/*A sample driver program for creating and using objects
of the class Distance*/

#include<iostream.h>

#include“Distance.h”

void main ()
{
Distance d1,d42;
dl.setFeet (2) ;
dl.setInches (2.2);
d2.setFeet (3) ;
d2.setInches(3.3);
cout<<dl.getFeet () <<"“ “<<dl.getInches()<<endl;
cout<<d2.getFeet{)<<" ”"<<d2.getInches()<<endl;

}

/*End of Distmain.cpp*/

Listing 2.8 Using classes in application programs
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Step 4: Compile the source code to get the object file.

Step 5: Link the object file with the library provided by the library programmer to get the
executable or another library.

Output of Listing 2.8
222
333

Implementation files are compiled and converted into static and dynamic libraries in the
usual manner.

Again, we notice that there is no obvious connection between the member data being
accessed within the member function and the object that is invoking the function.

The ‘this’ Pointer

The facility to create and call member functions of class objects is provided by the C++
compiler. You have already seen how this facility is to be used. However, how does the
compiler support this facility? The compiler does this by using a unique pointer known
as the °‘this’ pointer. A thorough understanding of the ‘this’ pointer is vital for
understanding many concepts in C++.

{ "The ‘this’ pointer is always a constant pointer. The ‘this’ pointer always points at the
object with respect to which the function was called.' An explanation that follows shortly
explains why and how it functions.

After the compiler has ascertained that no attempt has been made to access the private
members of an object by non-member functions, it converts the C++ code into an ordinary
C language code as follows:

1. It converts the class into a structure with only data members as follows.

Before

class Distance

{
int iFeet;
float flInches;
public:
void setFeet (int) ; //prototype only
int getFeet () ; //prototype only
void setInches (float); //prototype only
float getInches(); //prototype only



After

struct Distance

{

int iFeet;
float fInches;

}i
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. It puts a declaration of the ‘this’ pointer as a leading formal argument in the
prototypes of all member functions as follows.

Before

void setFeet (int) ;

After

void setFeet (Distance * const, int);

Before
int getFeet () ;
After

int getFeet (Distance * const) ;

Before

void setInches (float);

After

void setInches{(Distance * const,
Before

float getInches();

After

float) ;

float getInches(Distance * comst);
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3.1t puts the definition of the ‘this’ pointer as a leading formal argument in the
definitions of all member functions as follows, It also modifies all the statements
to access object members by accessing them through the ‘this’ pointer using the
pointer-to-member access operator (->).

Before

void Distance: :setFeet (int x)

{

iFeet=x;

}
After

void setFeet (Distance * const this, int x)

{

this->iFeet=x;

}

Before

int Distance: :getFeet ()

{

return iFeet;

}

Afte

=t

int getFeet (Distance * const this)

{

return this->iFeet;

Before

void Distance::setInches (float y)

{

fInches=y;

}
fter

>

void setInches (Distance * const this, float y)

{
}

this->fInches=y;
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Before

float Distance::getInches|()

{

return flInches;

}
After

float getInches(Distance * const this)

{

return this->fInches;

}

We must understand how the scope resolution operator works: The scope resolution
operator is also an operator. Just like any other operator, it operates upon its
operands. The scope resolution operator is a binary operator, that is, it takes two
operands. The operand on its left is the name of a pre-defined class. On its right is
a member function of that class) Based upon this information, the scope resolution
operator inserts a constant opetator of the correct type as a leading formal argument
to the function on its right. For example, if the class name is ‘Distance’, as in the
above case, the compiler inserts a pointer of ?fpe ‘Distance * const’ as a leading
formal argument to the function on its right.b;/

. It passes the address of invoking object as a leading parameter to each call to the
member functions as follows.

Befdre

dl.setFeet (1) ;

After

setFeet (&d1,1) ;

Before

dl.setInches(1.1);

After

setInches(&d1,1.1);
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Before

cout<<dl.getFeet () <<endl;
After

cout<<getFeet (&d1) <<endl;

Before
cout<<dl.getInches () <<endl;
After
cout<<getInches (&dl) <<endl;

In the case of C++, the dot operator’s definition has been extended. It not only
takes data members as in C but also member functions as its right-hand side operand.
If the operand on its right is a data member, then the dot operator behaves just like
it does in C language. However, if the operand on its right is a member function,
then the dot operator causes the address of the object on its left to be passed as an
implicit leading parameter to the function call.

Clearly, members of the invoking object are referred to when they are accessed without
any qualifiers in member functions. It should also be obvious that multiple copies of
member data exist (one inside each object) but only one copy exists for each member
function.

It is evident that the ‘this’ pointer should continue to point at the same object—the object
with respect to which the member function has been called\pthroughout its lifetime. For
this reason, the compiler creates it as a constant pointer.

The accessibility of the implicit object is the same as that of the other objects passed as
parameters in the function call and the local objects inside that function. The following
example illustrates this. A new function—°‘add()’—has been added to the existing
definition of the ‘Distance’ class.

/*Beginning of Distance.h*/
class Distance
{

/*

rest of the class Distance
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*/
Distance add(Distance) ;

}i

/*End of Distance.h*/

/*Beginning of Distlib.cpp*/
#include“Distance.h”

Distance Distance::add(Distance dd)

{
Distance temp; :
temp.iFeet=iFeet+dd. iFeet; //legal to access both
//temp.iFeet and
//dd.iFeet

temp.fInches=fInches+dd.fInches; //ditto
return temp;

}
/*

definitions of the rest of the functions of class
Distance

*/

/*End of Distlib.cpp*/

/*Beginning of Distmain.cpp*/

#include<iostream.h>

#include“Distance.h”

void main()
{
Distance di1,d2,d3;
dl.setFeet (1) ;
dl.setInches(1.1);
d2.setFeet (2);
d2.setInches(2.2);
d3=d1l.add(d2);
cout<<d3.getFeet () <<“’-"<<d3.getInches () <<“’’'\n”;

}

/*End of Distmain.cpp*/

Output
3-3.3

Listing 2.9 Accessing data members of local objects inside member functions and of
objects that are passed as parameters

The definition of ‘Distance :: add()’ function, after the previously described conversion
by the compiler is carried out, will appear as follows.
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Distance add(Distance * const this, Distance dd)

{

Distance temp;

temp.iFeet=this->iFeet+dd. iFeet;

temp.fInches=thig->fInches+dd.fInches;
- return temp;

}

When this function is called from the ‘main()’ function with respect to ‘d1’, the ‘this’
pointer points at ‘d1’. Thus, it is the private data member of ‘d1” that is being accessed in
the second and third lines of the ‘add()’ function.

So, now we can
e Declare a class
¢ Define member data and member functions
e Make members private and public

e Declare objects and call member functions with respect to objects

What advantages does all this lead to? The advantage that library programmers can now
derive from this arrangement is epitomized in the following observation:

‘An executable file will not be created from a source code in which private data members
of an object have been accessed by non-member functions.’

Once again, the importance of compile-time errors over run-time errors is emphasized.
Suppose, an if block exists in a function that is not intended by the library programmer to
access the data members of a structure. This if block contains a bug (say ‘d1.month’ has
been assigned the value 13, where ‘d1’ is a variable of the structure ‘date”).

A pure C compiler would not recognize this statement as an invalid access. During testing,
the if condition of this if block might never become true. The bug would remain undetected;
the executable will get created with bugs. Thus, creating bug-free executables is difficult
and unreliable in C. This is due to the absence of language constructs that enforce data
security.

On the other hand, a C++ compiler that also detects invalid access of private data members
would immediately throw an error during compile time itself and prevent the creation of
the executable. Thus, creating bug-free executables is easier and more reliable in C++
than in C. This is due to the presence of language constructs that enforce data security.

Data Abstraction

The class construct provides facilities to implement data abstraction. Data abstraction is
an important concept and should be understood properly. Let us take up the example of
the LCD projector from the previous chapter. It has member data (light and fan) as well
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as member functions (switches that operate the light and the fan). This real-world object
hides its internal operations from the outside world. It, thus, obviates the need for the
user to know the possible pitfalls that might be encountered during its operation. During
its operation, the LCD projector never reaches an invalid state. Moreover, the LCD
projector does not start in an invalid state.

Data abstraction is a virtue by which an object hides its internal operations from the rest
of the program. It makes it unnecessary for the client programs to know how the data is
internally arranged in the object. Thus, it obviates the need for the client programs to
write precautionary code upon creating and while using objects.

Now, in order to understand this concept, let us take an example in C++. The library
programmer, who has designed the ‘Distance’ class, wants to ensure that the ‘fInches’
portion of an object of the class should never exceed 12. If a value larger than 12 is
specified by an application programmer while calling the ‘Distance: :setInches()’ function,
the logic incorporated within the definition of the function should automatically increment
the value of ‘iFeet’ and decrement the value of ‘fInches’ by suitable amounts. A modified
definition of the ‘Distance::setInches()’ function is as follows.

void Distance::setInches (float y)

{

fInches=y;
if (fInches>=12)

{

iFeet+=fInches/12;
fInches-=((int) fInches/12)*12;

}
}

Here, we notice that an application programmer need not send values less than 12 while
calling the ‘Distance::setinches()’ function. The default logic within the
‘Distance::setInches()’ function does the necessary adjustments. This is an example of
data abstraction.

The above restriction may not appear mandatory. However, very soon we will create
classes where similar restrictions will be absolutely necessary (and also complicated).

Similarly, the definition of the ‘Distance::add()’ function should also be modified as
follows by the library programmer. Here it can assumed that the value of ‘fInches’ portion
of neither the invoking object nor the object appearing as formal argument (‘dd’) can be
greater than 12.

Distance Distance::add(Distance dd)
Distance temp;
temp.iFeet=iFeet+dd.iFeet;
temp.setInches (fInches+dd. fInches);
return temp;
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Now, if we write

dl.setFeet (1) ;
dl.setInches(9.5);
d2.setFeet (2);
d2.setInches(5.5);
d3=dl.add (d2) ;

Listing 2.10 Enforcing restrictions on the data members of a class

then the value of ‘d3.fInches’ will become 3 (not 15) and the value of ‘d3.iFeet’ will
become 4 (not 3).

It has already been mentioned that real-world objects never attain an invalid state. They
also do not start in an invalid state. Does C++ enable the library programmer to implement
this feature in class objects?

Let us continue with our earlier example—the ‘Distance’ class. Recollect that it is the
library programmer’s intention to ensure that the value of ‘fInches’ portion of none of
the objects of the class ‘Distance’ should exceed 12. Now, let us see Listing 2.11.

/*Beginning of DistJunk.cpp*/
#include<iostream.h>
#include“Distance.h”

void main ()

{

Distance d1;
cout<<dl.getFeet () <<™ "<<dl.getInches()<<endl;

}

/*End of DistJunk.cpp*/

Output
297 34.56

Listing 2.11 Object gets created with improper values

As you can see, the value of ‘fnches’ of ‘d1’ is larger than 12! This happened because
the value of both ‘iFeet’ and ‘fInches’ automatically got set to junk values when ‘d1’ was
allocated memory and the junk value is larger than 12 for ‘d1.fInches’. Thus, the objective
of the library programmer to keep the value of ‘fInches’ less than 12 has not yet been
achieved.
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It would be unrealistic to expect that an application programmer will explicitly initialize
each object that is declared.

Distance di;
dl.setFeet (0) ; //initialization
dl.setInches(0.0); //initialization

Obviously, the library programmer would like to add a function to the ‘Distance’ class
that gets called automatically whenever an object is created and sets the values of the
data members of the object properly. Such a function is the constructor. The concept of
constructor and a related function, the destructor, is discussed in one of the later chapters.

But we may say that even if ‘Distance’ was an ordinary structure and ‘setInches()’ function
was a non-member function just as in C, data abstraction would still be in place.
Nevertheless, in the case of C, the library programmer cannot force calls to only those
functions that have been defined. He/she cannot prevent calls to those functions that
he/she has not defined. Data abstraction is effective due to data hiding only-‘(recall the
case of the overhead pfojector systems discussed earlier).

On the other side of the coin, in C language, life becomes difficult for an application
programmer also. If a certain member of a structure variable acquires an invalid or a
wrong value, he/she has to hunt through the entire source code to detect the bug. This
problem rapidly gains significance as the code length increases. In actual practice, it is
common to have code of more than 25,000 lines.

Let us now sum up as follows:

‘Perfect definitions of the member functions are guaranteed to achieve their objective
because of data hiding.’

This is the essence of the object-oriented programming system. Real-world objects have
not only working parts but also an exclusive interface to these inner-working parts. A
perfect interface is guaranteed to work because of its exclusive rights.

Explicit Address Manipulation

An application programmer can manipulate the member data of any object by explicit
address manipulation. The following code illustrates the point.

/*Beginning of. DistAddrManip.cpp*/
#include“Distance.h”
#include<iostream.h>
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void main()

{
Distance di;
dl.setFeet (256) ;
dl.setInches(2.2);
char * p=(char *)&dl; //explicit address manipulation
*p=1; . //undesirable but unpreventable
cout<<dl.getFeet () <<" "<<dl.getInches ()<<endl;

}

/*End of DistAddrManip.cpp*/

Output
25722

Listing 2.12 Explicit address manipulation

However, such explicit address manipulation by an application programmer cannot be
prevented. It is left as an exercise for the readers to explain the output of the above
program (Listing 2.12).

The Arrow Operator

Member functions can be called with respect to an object through a pointer pointing at
the object. The arrow operator (->) does this. An illustrative example follows.

/*Beginning of PointerToMember.cpp*/
#include<iostream.h>
#include“Distance.h”

void main ()

{
Distance di; //object
Distance * dPtr; //pointer
dPtr=&d1; //pointer initialized
/*Same as dl.setFeet (1) and dl.setInches(1.1)*/
dPtr->setFeet (1) ; //calling member functions

dPtr->setInches(1.1); //through pointers
/*Same as dl.getFeet() and dl.getInches{)*/
cout<<dPtr->getFeet () << "<<dPtr->getInches () <<endl;

}

/*End of PointerToMember.cpp*/

Output
11.1

Listing 2.13 Accessing members through pointers
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It is interesting to note that just like the dot (.) operator, the definition of the arrow
(->) operator has also been extended in C++. It takes not only data members on its right
as in C, but also member functions as its right-hand side operand. If the operand on its
right is a data member, then the arrow operator behaves just as it does in C language.
However, if it is a member function of a class where a pointer of the same class type is its
left-hand side operand, then the compiler simply passes the value of the pointer as an
implicit leading parameter to the function call. Thus, the statement

dPtr->setFeet (1) ;
after conversion becomes

setFeet (dPtr, 1) ;

Now, the value of ‘dPtr’ is copied into the ‘this’ pointer. Therefore, the ‘this’ pointer also
points at the same object at which ‘dPtr’ points.

Calling One Member Function from Another

One member function can be called from another. An illustrative example follows.

/*Beginning of NestedCall.cpp*/
class A

{
int x;
public:
void setx(int) ;
void setxindirect (int) ;

}i

void A::setx(int p)

{
X=p;

}

void A::setxindirect (int q)

{
}

void main ()

{

A Al;
Al.setxindirect (1) ;

}

/*End of NestedCall.cpp*/

setx(q) ;

Listing 2.14 Calling one member function from another
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It is relatively simple to explain the above program. The call to the ‘A::setxindirect()’
function changes from

Al.setxindirect (1) ;

to
setxindirect (&A1,1) ;

The definition of the ‘A::setxindirect()” function changes from

void A::setxindirect (int q)

{

setx(q);

}

to

void setxindirect (A * const this, int Q)

{

this->setx(q); //calling function through a pointer

}
which, in turn, changes to

void setxindirect (A * comst this, int q)

{

setx(this,q) ; //action of arrow operator

}

2.2 Member Functions and Member Data msseossmmsmimsmim s

Let us study the various kinds of member functions and member data that classes in C++
have.

Overloaded Member Functions

Member functions can be overloaded just like non-member functions. The following
example illustrates the point.

/*Beginning of memFuncOverload.cpp*/
#include<iostream.h>

class A

{

public:
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void show () ;
void show(int); //function show() overloaded!!

}i

void A::show()

{

cout<<“Hello\n”;

}

void A::show(int x)

for (int i=0 ;‘i<x; i++)
cout<<“Hello\n”;

void main()

{
A A1
Al.show () ; //first definition called
Al.show(3); //second definition called

}

/*End of memFuncOverload.cpp*/

Output
Hello
Hello
Hello
Hello

Listing 2.15 Overloaded member functions

~

Function overloading enables us to have two functions of the same name and same
signature in two different classes. The following class definitions illustrate the point.

class A

{
public:
void show();
}i

class B

{
public:
void show();
}i

Listing 2.16 Facility of overloading functions permits member functions of two different
classes to have the same name
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A function of the same name ‘show()’ is defined in toth the classes— ‘A’ and ‘B’. The
signature also appears to be the same. But with our knowledge of the ‘this’ pointer, we
know that the signatures are acrually different. The function prototypes in the respective
classes are actually as follows.

void show(A * const) ;
void show(B * const) ;

Without the facility of function overloading, it would not be possible for us to have two
functions of the same name in different classes. Without the facility of function
overloading, choice of names for member functions would become more and more
restricted. Later, we will find that function overloading enables function overriding that,
in turn, enables dynamic polymorphism.

Default Values for Formal Arguments of Member Functions

We already know that default values can be assigned to arguments of non-member
functions. Default values can be specified for formal arguments of member functions
also. An illustrative example follows.

/*Beginning of memFuncDefault.cpp*/
#include<iostream.h>

class A

{
public:
void show(int=1);

}i

void A::show(int p)

{
for(int i=0;i<p;i++)
cout<<“Hello\n”;

}

void main()

{
A Al;
Al.show () ; //default value taken
Al.show(3) ; //default value overridden

}

/*End of memFuncDefault.cpp*/
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Output
Hello
Hello
Hello
Hello

Listing 2.17 Giving default values to arguments of member functions

Again, it has to be kept in mind that a member function should be overloaded with care
if default values are specified for some or all of its formal arguments. For example, the
compiler will report anambiguity error when it finds the second prototype for the ‘show()’
function of class ‘A’ in the following listing.

class A
{
public:
void show() ;
void show (int=0) ; //ambiguity error

}i

Listing 2.18 Giving default values to arguments of overioaded member functions can lead
to ambiguity errors

Reasons for such ambiguity errors have already been explained in the section on function
overloading in Chapter 1. As in the case of non-member functions, if default values are
specified for more than one formal argument, they must be specified from the right to the
left. Similarly, default values must be specified in the function prototypes and not in
function definitions. Further, default values can be specified for a formal argument of

any type.

Inline Member Functions

\ ~ Member functions are made inline by either of the following two methods.

¢ By defining the function within the class itself (as in Listing 2.5)

¢ By only prototyping and not defining the function within the class. The function
is defined outside the class by using the scope resolution operator. The definition
is prefixed by the inline keyword\.‘; As in non-member functions, the definition
of the inline function must appear before it is called. Hence, the function should
be defined in the same header file in which its class is defined. The following
listing illustrates this.
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/*Beginning of memInline.cpp*/

class A
{
public:
void show() ;
¥
inline void A::show() //definition in header file itself
//definition of A::show() function
}

/*End of memInline.cpp*/

Listing 2.19 Inline member functions

Constant Member Functions

Let us consider this situation. The library programmer desires that one of the member
functions of his/her class should not be able to change the value of member data. This
function should be able to merely read the values contained in the data members, but not
change them. However, he/she fears that while defining the function he/she might
accidentally write the code to do so. In order to prevent this, he/she seeks the compiler’s
help. If he/she declares the function as a constant function, and thereafter attempts to
change the value of a data member through the function, the compiler throws an error.

Let us consider the class ‘Distance’. The ‘Distance::getFeet()’, ‘Distance::getInches()’
and the ‘Distance::add()’ functions should obviously be constant functions. They should
not change the values of ‘iFeet’ or ‘fInches’ members of ihe invoking object even by accident.

Member functions are specified as constants by suffixing the prototype and the function
definition header with the const keyword. The modified prototypes and definitions of
the member functions of the class ‘Distance’ are as follows.

/*Beginning of Distance.h*/
/*Header file containing the definition of the Distance
class*/
class Distance
{
int iFeet;
float flnches;
public:
void setFeet (int) ;
int getFeet () const; //constant function
void setInches(float) ;
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float getlInches() const; //constant function
Distance add(Distance) const; //constant function

/*End of Distance.hx/

/*Beginning of Distlib.cpp*/
/*Implementation file for the class Distance*/
#include“Distance.h”

void Distance::setFeet (int x)

{

iFeet=x;

int Distance::getFeet () const //constant function
iFeet++; //ERROR! !
return iFeet;

}

void Distance::setInches(float y)

{

fInches=y;

}

float Distance::getInches() comnst //constant function

{
fInches=0.0; //ERROR! !
return fInches;

}

Distance Distance::add(Distance dd) const //constant
//function

Distance temp;
temp.iFeet=1iFeet+dd. iFeet;
temp.setInches(fInches+dd.fInches);
iFeet++; //ERROR! !

return temp;

}

/*End of Distlib.cpp*/

Listing 2.20 Constant member functionsc

( For constant member functions, the memory occupied by the invoking object is a read-
only memory\,How does the compiler manage this? {For constant member functions, the
‘this’ pointer becomes ‘a constant pointer to a constant” instead of only “a constant pointer’. :
For example, the ‘this’ pointer is of type const ‘Distance *’ const for the
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‘Distance::getFeet()’, ‘Distance::getInches()’ and ‘Distance::add()’ functions. For the
other member functions of the class ‘Distance’, the ‘this’ pointer is of type ‘Bﬂc&*’

congﬁf

Clearly, only constant member functions can be called with respect to constant objects.
Non-constant member functions cannot be called with respect to constant objects.
However, constant as well as non-constant functions can be called with respect to non-
constant objects..

i
/

Mutable Data Members

A mutable data member is never constant. It can be modified inside constant functions
also. Prefixing the declaration of a data member with the keyword mutable makes it
mutable. The following listing illustrates this.

/*Beginning of mutable.h*/

class A

{
int x; //non-mutable data member
mutable int y; //mutable data member

public:
void abc() const //a constant member function
{
X++; //ERROR: cannot modify a non-constant data
//member in a constant member function
V++; //OK: can modify a mutable data member in a
//constant member function
void def () //a non-constant member function
{
X++; //OK: can modify a non-constant data member
//in a non-constant member function
Y++; //OK: can modify a mutable data member in a

//non-constant member function

}i

/*End of mutable.h*/

Listing 2.21 Mutable data members

We frequently need a data member that can be modified even for constant objects. Suppose,
there is a member function that saves the data of the invoking object in a disk file.
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Obviously, this function should be declared as a constant to prevent even an inadvertent
change to data members of the invoking object. If we need to maintain a flag inside each
object that tells us whether the object has already been saved or not, such a flag should be
modified within the above constant member function. Therefore, this data member should
be declared a mutable data member.

Friends

/ . .

" A class can have global non-member functions and member functions of other classes as
friends. Such functions can directly access the private data members of objects of the
class.".

Friend Non-member Functions

(A friend function is a non-member function that has special rights to access private data
members of any object of the class of whom it Vis;qfri\enc?) In this section, we will study
only those friend functions that are not member functions of some other class.

A friend function is prototyped within the definition of the class of which it is intended
to be a friend. The prototype is prefixed with the keyword friend. Since it is a non-
member function, it is defined without using the scope resolution operator. Moreover, it
is not called with respect to an object. An illustrative example follows:

/*Beginning of friend.cpp*/

class A
{
int x;
public:
friend void abc (A&); //prototype of the friend function
bi . ‘
L(I
void abc (A& AObj) //definition of the friend function
{
AObj . X+t /accessing private members of the object
}
void main () /
{
A Al;
abc (AL} ;

}
/*End of friend.cpp*/

Listing 2.22 Friend functions
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A few points about the friend functions that we must keep in mind are as follows:

e

‘e friend keyword should appear in the prototype only and not in the definition.

e Since it is a non-member function of the class of which it is a friend, it can be
prototyped in either the private or the public section of the class.

e A friend function takes one extra parameter as compared to a member function
that performs the same task. This is because it cannot be called with respect to any
object. Instead, the object itself appears as an explicit parameter in the function
call.

e We need not and should not use the scope resolution operator whlle defining a

friend function."
N

There are situations where a function that needs to access the private data members of
the objects of a class cannot be called with respect to an object of the class. In such
situations, the function must be declared as a friend. We will encounter one such situation
in the chapter on ‘Operating Overloading’.

Friend functions do not contradict the principles of OOPS. Since it is necessary to prototype
the friend function inside the class itself, the list of functions that can access the private
members of a class’s object remains well defined and restricted. The benefits provided
by data hiding are not compromised by friend functions.

Friend Classes

A class can be a friend of another class. Member functions of a friend class can access
private data members of objects of the class of which it is a frzend If class B is to be
made a friend of class A, then the statement

\

friend class B; N

should be written within the definition of class A. The following example (Listing 2.23)
illustrates this.

class A
{
friend class B; //declaring B as a friend of A
/*
rest of the class A
*/

i

Listing 2.23 Declaring friend classes
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It does not matter whether the statement declaring class B as a friend is mentioned within
the private or the public section of class A. Now, member functions of class B can access
the private data members of objects of class Al Listing 2.24 exemplifies this.

/*Beginning of friendClass.cpp*/

class B; //forward declaration.. necessary because
//definition of class B is after the statement
//that declares class B a friend of class A.

class A

{
int x;
public:
void setx(const int=0);
int getx()const;
friend class B; //declaring B as a friend of A

}i
class B

{ L4
A * Aptf;.
public:
void Map(const A * const);
void test_friend(const int);

}i

void B::Map(const A * censt p)
{ >
APtr = Ppa

}

void B::test friend(int i)

{
}

/*End of friendClass.cpp*/

APtr->x=i; //accessing the private data member

Listing 2.24 Effect of declaring a friend class

As we can see, member functions of class B are able to access private data member of
objects of the class A although they are not member functions of class A. This is because
they are member functions of class B that is a friend of class A.

Friendship is not transitive. For example, consider Listing 2.25.
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class B;
class C;
/*Beginning of friendTran.cpp*/
class A

{

friend class B;

int a;
}i
class B
{
friend class C;
Vi
class C
{
void £ (A * p)
{
p->a++; //error: C is not a friend of A
//despite being a friend of a friend
}
}i

/*End of friendTran.cpp*/

Listing 2.25 Friendship is not transitive

Friend Member Functions

How can we make some specific member functions of one class friendly to another
class?(For making only ‘B::test_friend()’ function a friend of class A, replace the line

friend class B;
in the declaration of the class A with the line
friend void B::test_friend();
The modiﬁed definition of the class A is:

class A

{
/*
rest of the class A
*/
friend void B::test friend();
i
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However, in order to compile this code successfully, the compiler should first see the
definition of the class B. Otherwise, it does not know that ‘test_friend()’ is a member
function of the class B. This means that we should put the definition of class B before the
definition of class A.

However, a pointer of type A * is a private data member of class B. So, the compiler
should also know that there is a class A before ihcompiles the definition of class B. This
problem of circular dependence s solved by forward declaration. This is done by inserting
the line '

class A; //Declaration only! Not definition!!

before the definition of class B. Now, the declarations and definitions of the two classes
appear as follows. '

/*Beginning of friendMemFunc.h*/
class A;

class B

{
A * APtr;
public: .
void Map(const A * const);
void test friend(const int=0);

oo

class A
{
int x;
public:

friend void B::test friend(const int=0);
: AN - -
}i

/*End of friendMemFunc.h*/

Listing 2.26 Forward declaring a class that requires a friend

Another problem arises if we try to define the ‘B::test_friend()’ function as an inline
function by defining it within class B itself. %

class B

/*
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rest of the class B

*/ ~
public: \\
‘void test_friend(const int p) g
{ {
APtr->x2p; //will not gompidke
}
}i - -

Listing 2.27 Problem in declaring a friend member function inline

But how will the code inside ‘B::test_friend()’ function compile? The compiler will not
know that there is a data member ‘x’ inside the definition of class A, For overcoming this
problem, merely prototype ‘B::test_friend()’ function within class B; define it as inline
after the definition of class A in the header file itself. The revised definitions appear as
follows.

/*Beginning of friendMemFuncInline.h*/
class A;

class B

{
A * APtr;
public:
void Map(const A * const);
void test friend(comnst int=0);

};
class A

{
int x;
public:
friend void B::test friend(const int=0)};
};

inline void B::test_friend(comst int p)

{

APtr->X=p;

} TN e

/*End of friendMemFuncInline.h*/

Listing 2.28 Declaring a friend member function inline
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Friends as Bridges
Friend functions can be used as bridges between two classes.

Suppose there are two unrelated classes whose private data members need a simultaneous
update through a common function. This functlon should be declared as a friend to both
the classes. '

class B; //forward declaration

class A
{ .
/*
rest of the class A
*/
friend void ab(const A&, const B&);
}i : '
class B
{
/*
rest of the class B
*/
friend void ab(const A&, const B&);
}i

Listing 2.29 Friends as bridges

Static Members

Static Member Data
Static data members hold global data that is common to all objects of the class. Examples
of such global data are
e count of objects currently present,
e common data accessed by all objects, etc.
Let us consider class ‘Account’. We want all objects of this class to calculate interest at

the rate of say 4.5%. Therefore, this data should be globally avallable to all objects of
this class (Listing 2.30).



78 Object-Oriented Programming with C++

This data cannot and should not be a member of the objects themselves. Otherwise,
multiple copies of this data will be embedded within the objects taking up unnecessary
space. Same value would have to be maintained for this data in all objects. This is very
difficult. Thus, this data cannot be stored in a member variable of class ‘Account’.

At the same time, this data should not be stored in a global variable. Then the data is
liable to be changed by even non-member functions. It will also potentially lead to name
conflicts. However, this means that it should be stored in a member variable of class
‘Account’!

How can this conflict be resolved? Storing the data in a static variable of the class
resolves this conflict( Static data members are members of the class and not of any object
of the class, that is, they are not contained inside any object™

/ We prefix the declaration of a variable within the class definition with the keyword
static to make it a static data member of the class.

/*Beginning of  Account.h*/
class Account

{

static float interest rate; //a static data member
/*

rest of the class Account
*/

Vi

/*End of Account.h*/

Listing 2.30 Declaring a static data member

A statement declaring a static data member inside a class will obviously not cause any
memory to get allocated for it. Moreover, memory for a static data member will not get
allocated when objects of the class are declared.\il"his is because a static data member is
not a member of any object. Therefore, we must not forget to write the statement to
define (allocate memory for) a static member variable. Explicitly defining a static data
member outside the class is necessaw.bthemise, the linker produces an error. The
following statement allocates memory for ‘interest_rate’ member of class ‘Account’.

float Account::interest rate;

The above statement initializes ‘interest_rate’ to zero. If some other initial value (say
4.5) is desired instead, the statement should be rewritten as follows.

float Account::interest rate=4.5;
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 Static data members should be defined in the implementation files only. The header file

is included in both the implementation file and the driver program. If a static data member
is defined in the header file, the static data member’s definition would be in two files—
the library file created from the implementation file and the object file created from the
driver program. But in order to get the executable, the linker will have to link these files.
Upon finding two definitions of the static data member, the linker would throw an error.

Making static data members private prevents any change from non-member functions as
only member functions can change the values of static data members.

Introducing static data members does not increase the size of objects of the class> Static
data members are not contained within objects. There is only one copy of the static data
member in the memory. Let us try the following program to find out.

/*Beginning of staticSize.cpp*/

class A

{
int x;
char vy;
float z;

static float s;

Vi
float A::s8=1.1;

void main ()

{
}

/*End of staticSize.cpp*/

cout<<sizeof (A) <<endl;

Output
9

Listing 2.31 Static data members are not a part of objects

Static data members can be of any type. For example, name of the bank that has the
accounts can be stored as a character array in a static data member of the class as follows.

/*Beginning of Account.h*/

class Account

{

static float interest rate;
static char name[30];
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/*
rest of the class Account
*/
}i

/*End of Account.h*/

/*Beginning of Account.cpp*/
#include“Account.h”

float A::interest_rate=4.5;
char A::name([30]="The Rich and Poor Bank”;
/*
definitions of the rest of the functions of class Account

*/

/*End of Account.cpp*/

Listing 2.32 Static data member can be of any type

Static data members of integral type can be initialized within the class itself if the need
arises. For example,

/*Beginning of Account.h*/

class Account

{

static int nameLength=30;
static char name [namelLength] ;
/*
rest of the class Account
*/
}i

/*End of Account.h*/

/*Beginning of Account.cpp*/
#include“Account.h”

int A::nameLength;
char A::name[nameLength]="The Rich and Poor Bank”;
/*
definitions of the rest of the functions of class Account

*/

/*End of Account.cpp*/

Listing 2.33 Initializing integral static data members within the class itself
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‘We must notice that the static data member that has been initialized inside the class must
be still defined outside the class to allocate memory for it. Once the initial value has been
supplied within the class, the static data member must not be re-initialized when it is
defined.

Non-integral static data members cannot be initialized like this. For example,

/*Beginning of Account.h¥*/

class Account

{
static char name [30]="The Rich and Poor Bank”;//error!!
/*
rest of the class Account
*/
}i

/*End of Account.h*/

Listing 2.34 Non-integral static data members cannot be initialized within the class

In Listing 2.33, the variable ‘nameLength’ is referred to directly without the class name
and the scope resolution operator while defining the variable ‘name’. One static data
member can directly refer to another without using the scope resolution operator.

Member functions can refer to static data members directly. An example follows.

/*Beginning of Account.h*/

class Account

{
static float interest_rate;
public:
void updateBalance() ;
/*
rest of the class Account
*/
}i

/*End of Account.h¥*/

/*Beginning of Account.cpp*/
#include“Account .h”

float Account::interest rate=4.5;



82 Object-Oriented Programming with C++

void Account::updateBalance ()

{

if (end_of_year)
balance+=balance*interest rate/100;

}
/*

definitions of the rest of the functions of class Account

*/

/*End of Account.cpp*/

Listing 2.35 Accessing static data members from non-static member functions

The ‘object-to-member access operator’ can be used to refer to the static data member of
a class with respect to an object. The class name with the scope resolution operator can
do this directly.

f=al.interest_rate; //al is an object of the class Account
f=Account::interest_rate;

There are some things static data members can do but non-static data members cannot.

e A static data member can be of the same type as the class of which it is a member.

class A
{

static A Al; //0K : static

A * APtr; //OK : pointer

A A2; //ERROR!! : non - static
}i

Listing 2.36 Static data members can be of the same type as their class

e A static data member can appear as the default value for the formal arguments of
member functions of its class.

class A

{

static int x;
int y;
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public:
void abc (int=x); //OK
void def (int=y); //ERROR!! : object required

}i

Listing 2.37 A static data member can appear as the default argument in the member
functions

A static data member can be declared to be a constant. In that case, the member functions
will be able to only read it but not modify its value.

Static Member Functions

How do we create a member function that need not be called with respect to an existing
object? This function’s sole purpose is to access and/or modify static data members of
the class. Static member functions fulfill the above criteria.@reﬁxing the function prototype
with the keyword static specifies it as a static member function. However, the keyword
static should not reappear in the definition of the ﬁmctionD

@uppose there is a function ‘set_interest_rate()’ that sets the value of the ‘interest_rate’
static data member of class ‘Account’. The application programmer should be able to
call this function even if no objects have been declared.)As discussed previously, this
function should be static. Its definition can be as follows.

/*Beginning of Account.h*/
class Account

static float interest_rate;
public:
static void set_interest_rate(float);
/*
rest of the class Account
*/

/*End of Account.h*/

/*Beginning of Account.cpp*/
#include“Account.h”

float Account::interest_rate = 4.5;

void Account::set_interest rate(float p)

{

interest rate=p;

}
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/*

definitions of the rest of the functions of class Account
*/
/*End of Account.cpp*/

Listing 2.38 Static member function

Now, the ‘Account::set_interest_rate()’ function can be called directly without an object.

// Account::set_interest rate(5);

Static member functions do not take the ‘this’ pointer as a formal argument. Therefore,
accessing non-static data members through a static member function results in compile-
time errors. Static member functions can access only static data members of the class.

Static member functions can still be called with respect to objects.

al.set_interest rate(5); //al is an object of the class
//Account

2.3 Objects and Functions

Objects can appear as local variables inside functions. They can also be passed by value
or by reference to functions. Finally, they can be returned by value or by reference from
functions. The following examples illustrate all this.

/*Beginning of Distance.h*/
class Distance

{
public: -~
/*function to add the invoking object with another
object passed as a parameter and return the resultant

object*/
Distance add(Distance) ;
/*
rest of the class Distance
*/

bi

/*End of Distance.h*/

/*Beginning of Distance.cpp*/
#include“Distance.h”
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Distance Distance::add(Distance dd)

{

Distance temp;
temp.iFeet=1iFeet+dd.iFeet; .
temp.setInches (fInches+dd. fInches) ;
return temp;

}
/*

definitions of the rest of the functions of class
Distance

*/

/*End of Distance.cpp*/

/*Beginning of Distmain.cpp*/
#include<iostream.h>
#include“Distance.h”

void main()

{

Distance di,d2,d3;

di.
d1.
az
az.

d3=

setFeet (5);
setInches(7.5);

.setFeet (3);

setInches (6.25);
dl.add (d2);

cout<<d3.gepFeet () <<“ ”“<<d3.getInches()<<endl;

}

/*End of Distmain.cpp*/

Output

91.75

85

Listing 2.39 Returning class objects

/*Beginning of Distance.h*/
class Distance

/*definition of the class Distance*/

}i

Distance& larger (const Distance&,conat Distance&);
/*End of Distance.h*/

/*Beginning of Distance.cpp*/
#include“Distance.h”
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Distance& larger(const Distance& ddl,const Distance& dd2)
{
float i, 3;
i=ddl.getFeet () *12+ddl.getInches () ;
j=dd2.getFeet () *12+dd2.getInches () ;
if(i>7j)
return ddi;
else
return dd2;
}

/*
definitions of the rest of the functions of class
Distance

*/
/*End of Distance.cpp*/

/*Beginning of Distmain.cpp*/
#include<iostream.h>
#include“Distance.h”

void main()
{
Distance d1,d2;
dl.setFeet (5);
dl.setInches(7.5);
d2.setFeet (5) ;
d2.setInches (6.25);
Distance& d3=larger(dil,d2);
d3.setFeet (0) ;
d3.setInches(0.0);
cout<<dl.getFeet () <<“ "<<dl.getInches()<<endl;
cout<<d2.getFeet () <<“ “<<d2.getInches()<<endl;

}

/*End of Distmain.cpp*/

Output
00.0
56.25

Listing 2.40 Returning class objects by reference
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2.4 Objects and Arrays

Let us understand how arrays of objects and arrays inside objects are handled in C++.

Arrays of Objects

We can create arrays of objects. The following program shows how.

/*Beginning of DistArray.cpp*/
#include“Distance.h”
#include<iostream.h>

#define SIZE 3

void main ()

{
Distance dArray[SIZE];
int a;
float b;
for (int 1=0;1<SIZE;i++)
{

cout<<“Enter the feet : ”;
cinss>a;

dArray[i] .setFeet(a);
cout<<"“Enter the inches : ”;
cin>>b;

dArray[i] .setInches (b) ;

}

for(int i=0;i<SIZE;i++)

{

cout<<dArray[i] .getFeet () <<“ ”
<<dArray[i] .getInches () <<endl;

}
}

/*End of DistArray.cpp*/

Output

Enter the feet : 1<enter>
Enter the inches : 1.1<enter>
Enter the feet : 2<enter>
Enter the inches : 2.2<enter>
Enter the feet : 3<enter>
Enter the inches : 3.3<enter>
11.1

222

333

Listing 2.41 Array of objects
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Arrays Inside Objects

An array can be declared inside a class. Such an array becomes a member of all objects
of the class. It can be manipulated/accessed by all member functions of the class. The
following class definition illustrates this.

#define SIZE 3
/*A class to duplicate the behaviour of an integer array*/
class 2

{
int iArray([SIZE];
public:
void setElement (unsigned int,int);
int getElement (unsigned int) ;
}i
/*function to write the value passed as second parameter at
the position passed as first parameter*/
void A::setElement (unsigned int p,int v)
{
if (p>=SIZE)
return; //better to throw an exception
iArray[pl=v;

/*function to read the value from the position passed as
parameter*/
int A::getElement (unsigned int p)
{
if (p>=SIZE)
return -1; //better to throw an exception
return iArray[pl;

}

Listing 2.42 Arrays inside objects

The class definition is self-explanatory. However, the comments indicate that it is better
to throw exceptions rather than terminate the function. What are exceptions? How are
they thrown? What are the benefits of using them? All these questions are answered in
the chapter on Exception Handling.

2.5 Namespaces s

(Namespaces enable the C++ programmer to prevent pollution of the global namespace
that leads to name clashes>

The term ‘global namespace’ refers to the entire source code. It also includes all the
directly and indirectly included header files. By default, the name of each class is visible
in the entire source code, that is, in the global namespace. This can lead to problems.
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Suppose a class with the same name is defined in two header files.

/*Beginning of Al.h*/
class A

{

}i

/*End of Al.h*/

/*Beginning of A2.h*/
class A //a class with an existing name

{
}i

/*End of A2.h*/

Now let us include both these header files in a program and see what happens if we
declare an object of the class.

/*Beginning of multiDef0l.cpp*/
#include“Al.h”

#include“A2.h"

void main()

A AObj; //ERROR: Ambiguity error due to multiple
//definitions of A
}

/*End of multiDef0l.cpp*/

Listing 2.43 Referring to a globally declared class can lead to ambiguity error

The scenario in Listing 2.43 is quite likely in large programs. The global visibility of the
definition of class ‘A’ makes the inclusion of the two header files mutually exclusive.
Consequently, this also makes use of the two definitions of class ‘A’ mutually exclusive.

How can this problem be overcome? How can we ensure that an application is able to use
both definitions of class ‘A’ simultaneously‘.{Enclosing the two definitions of the class in
separate namespaces overcomes this problem.

/*Beginning of Al.h*/
namespace Al //beginning of a namespace Al
{
class A
{
}i
} //end of a namespace Al
/*End of Al.h*/
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/*Beginning of A2.h*/
namespace A2 //beginning of a namespace A2

{

class A

{

}i
} //end of a namespace A2
/*End of A2.h*/

Now the two definitions of the class are enveloped in two different namespaces. The
corresponding namespace, followed by the scope resolution operator, must be prefixed
to the name of the class while referring to it anywhere in the source code. Thus, the
ambiguity encountered in the above listing can be overcome. A revised definition of the
‘main()’ function from Listing 2.43 illustrates this.

/*Beginning of multiDef02.cpp*/
#include“Al.h"
#include“hd2.h”
void main ()
{
Al::A AObjl; //OK: ACbjl is an object of the class
//defined in Al.h
A2::A AObj2; //OK: AObj2 is an object of the class
//defined in A2.h
}

/*End of multiDef02.cpp*/

Listing 2.44 Enclosing classes in namespaces prevents pollution of the global namespace

Qualifying the name of the class with that of the namespace can be cumbersome. The
using directive enables us to make the class definition inside a namespace visible so
that qualifying the name of the referred class by the name of the namespace is no longer
required. The following listing shows how this is done.

/*Beginning of using.cpp*/
#include“Al.h”
#include“A2.h"
void main ()
{
using namespace Al;
A AObj1; //OK: AObjl is an object of the class
//defined in Al.h
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A2::A AObj2; //OK: AObj2 is an object of the class
//defined in A2.h
}

/*Beginning of using.cpp*/

Listing 2.45 The ‘using’ directive makes qualifying of referred class names by names of
enclosing namespaces unnecessary

However, we must note that the using directive brings back the global namespace pollution
that the namespaces mechanism was supposed to remove in the first place! The last line
in the above listing compiles only because the class name was qualified by the name of
the namespace.

' ~ s .
. Some namespaces have long names. Qualifying the name of a class that is enclosed
within such a namespace, with the name of the namespace, is cumbersome.

/*Beginning of longNameOl.cpp*/
namespace a_very very long_name

{

class A

{
}i
}

void main ()

{

a_very_very long_name::A Al; //cumbersome long name

/*End of longNameOl.cpp*/

Listing 2.46 Cumbersome long names for namespace

~ Assigning a suitably short alias to such a long namespace name solves the problem.

/*Beginning of longName0O2.cpp*/
namespace a_very very long_name
{ .

class A

{

}i
}
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namespace X = a_very very long name; //declaring an
//alias
void main()
X::A Al; //convenient short name

/*End of longName02.cpp*/

Listing 2.47 Providing an alias for a namespace

Aliases provide an incidental benefit also. Suppose an alias has been used at a number of
places in the source code. Changing the alias declaration so that it stands as an alias for
a different namespace will make each reference of the enclosed class refer to a completely
different class. Suppose an alias X refers to a namespace ‘N1°.

namespace X = N1; //declaring an alias

Further, suppose that this alias has been used extensively in the source code.

X::A AODbJ; //RAObj is an object of class A that is
//enclosed in namespace N1.

AObj.£1(); //£1() is a member function of the above
//class.

If the declaration of alias X is modified as follows (‘N2’ is also a namespace)
namespace X = N2; //modifying the alias

then, all existing qualifications of referred class names that use X would now refer to
class A that is contained in namespace ‘N2’. Of course, the lines having such references
would compile only if both of the namespaces, ‘N1’ and “N2’, contain a class named A,
and if these two classes have the same interface.

For keeping the explanations simple, classes that have been given as examples in the rest
of this book are not enclosed in namespaces.

2.6 Nested Classes i

(A class can be defined inside another class. Such a class is known as a nested class. The

class that contains the nested class is known as the enclosing class.Nested classes can be

- defined in the private, protected, or public portions of the enclosing class (protected
access specifier is explained in the chapter on inheritance).

In the following example, class B is defined in the private section of class A.
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/*Beginning of nestPrivate.h*/

class A
{
class B
{
/*
definition of class B
*/
}i
/*
definition of class A
*/
}i

/*End of nestPrivate.h*/

Listing 2.48 Nested classes

In the following example, class B is defined in the public section of class A.

/*Beginning of nestPublic.h*/
class A
{
public:
class B
{
/*
definition of class B
*/
}i
/*
definition of class A
*/
}i

/*End of nestPublic.h*/

Listing 2.49 A public nested class

A nested class is created if it does not have any relevance outside its enclosing class. By
defining the class as a nested class, we avoid a name collision. In the above two listings
(Listing 2.48 and Listing 2.49), even if there is a class B defined as a global class, its

name will not clash with the nested class B.
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The size of objects of an enclosing class is not affected by the presence of nested classes.

/*Beginning of nestSize.cpp*/
#include<iostream.h>

class A
{
int x;
public:
class B

{
}i

int y;
Vi

void main()

{

cout<<gizeof (int) <<endl;
cout<<sizeof (A) <<endl;

}

/*End of nestSize.cpp*/

Output
4
4

Listing 2.50 Size of objects of the enclosing class

How are the member functions of a nested class defined? Member functions of a nested
class can be defined outside the definition of the enclosing class. This is done by prefixing
the function name with the name of the enclosing class followed by the scope resolution
operator. This, in turn, is followed by the name of the nested class followed again by the
scope resolution operator. This is illustrated by the following example.

/*Beginning of nestClassDef.h*/
class A
{

public:

class B

{

public:
void BTest (); //prototype only
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Vi
/*
definition of class A
*/
}i

/*End of nestClassDef.h*/

/*Beginning of nestClassDef.cpp*/
#include“nestClassDef .h”
void A::B::BTest ()

{
//definition of A::B::BTest () function
}
/*
definitions of the rest of the functions of class B
*/

/*End of nestClassDef.cpp*/

Listing 2.51 Defining member functions of nested classes

A nested class may be only prototyped within its enclosing class and defined later. Again,
the name of the enclosing class followed by the scope resolution operator is required.

/*Beginning of nestClassDef.h*/

class A
{
class B; - //prototype only
}i
class A::B
{
/*
definition of the class B
*/
}i

/*End of nestClassDef.h*/

Listing 2.52 Defining a nested class outside the enclosing class

Objects of the nested class are defined outside the member functions of the enclosing
class in much the same way (by using the name of the enclosing class followed by the
scope resolution operator).

A::B Bl;
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However, the above line will compile only if class B is defined within the public section
of class A. Otherwise, a compile-time error will result.

An object of the nested class can be used in any of the member functions of the enclosing
class without the scope resolution operator. Moreover, an object of the nested class can
be a member of the enclosing class. In either case, only the public members of the object
can be accessed unless the enclosing class is a friend of the nested class.

/*Beginning of nestClassObj.h*/
class A

{

class B
{
public:
void BTest () ; //prototype only

}i
B B1;

public:
void ATest () ;

Vi

/*End of nestClassObj.h*/

/*Beginning of nestClassObj.cpp*/
#include"nestClassObj.h”

void A::ATest ()
{
Bl.BTest () ;
B B2;
B2.BTest () ;

}

/*End of nestClassObj.cpp*/

Listing 2.53 Declaring objects of the nested class in the member functions of the enclosing
class

Member functions of the nested class can access the non-static public members of the
enclosing class through an object, a pointer, or a reference only. An illustrative example
follows.

/*Beginning of enclClassObj.h*/
class A
{
public:
void ATest () ;
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class B

{
public:
void BTest (A&) ;
void BTestl();

}i
}i

/*End of enclClassObj.h*/

/*Beginning of enclClassObj.cpp*/
#include“enclClassObj.h”

void A::B::BTest (A& ARef)

{
}

void A::B::BTestl ()

{
}

/*End of enclClassObj.cpp*/

ARef .ATest () ; / /0K

ATest () ; //ERROR! !

Listing 2.54 Accessing non-static members of the enclosing class in member functions of
the nested class.

It can be observed that an error is produced when a direct access is made to a member of
the enclosing class through a function of the nested class. This is as it should be. After
all, creation of an object of the nested class does not cause an object of the enclosing
class to be created. The classes are nested to merely control the visibility. Since

- “AuB::BTest()” function will be called with respect to an object of class B, a direct
access to a member of the enclosing class A can be made through an object of that class
only.

By default, the enclosing class and the nested class do not have any access rights to each
other’s private data members. They can do so only if they are friends to each other.

Classes have both member data and member functions. Member functions can be given exclusive
rights to access data members. Member functions and member data can be private, protected, or
public. The struct keyword has been redefined in C++. Apart from member data, structures in
C++ can have member functions also. In a class, members are private by default. In a structure,
members are public by default.
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The scope resolution operator is used to separate the class definition from the definitions of the
member functions. The class definition can be placed in a header file. Member functions, with the
aid of scope resolution operator, can be placed in a separate implementation file.

The ‘this’ pointer is implicitly inserted by the compiler, as a leading formal argument, in the prototype
and in the definition of each member function of each class. When a member function is called with
respect to an object, the compiler inserts the address of the calling object as a leading parameter to
the function call. Consequently, the “this’ pointer, which exists as the implicit leading formal argument
in all member functions, always points at the object with respect to which the member function has
been called.

Access to member data and member functions from within member functions is resolved by the
‘this” pointer. The ‘this’ pointer is a constant pointer in case of non-constant member functions and
a constant pointer to a constant in case of constant member functions.

If the operand on its right is a data member, then the object-to-member access operator (.) behaves
just as it does in C language. However, if it is a member function of a class whereas an object of the
same class is its left-hand side operand, then the compiler simply passes the address of the object as
an implicit leading parameter to the function call.

Similarly, if the operand on its right is a data member, then the pointer-to-member access operator
(->) behaves just as it does in C language. However, if it is a member function of a class whereas a
pointer to an object of the same class is its left-hand side operand, then the compiler simply passes
the value of the pointer as an implicit leading parameter to the function call. Member functions can
call each other. Calls are resolved through the ‘this’ pointer. Member functions can be overloaded.
Default values can be given to the formal arguments of member functions.

Programs having inline functions tend to run faster than equivalent programs with non-inline
functions. A function is declared inline either by defining it inside a class or by declaring it inside a
class and defining it outside with the keyword inline. This feature should be used sparingly.
Otherwise, the increased size of the executable can slow it down.

If required, member functions can be declared as constant functions to prevent even an inadvertent
change in the data members. A function can be declared as a constant function by suffixing its
prototype and the header of its definition by the keyword const.

" A mutable data member is never constant. It is modifiable inside constant functions-also. A friend

" function is a non-member function that has a special right to access private data members of objects
of the class of which it is a friend. This does not really negate the philosophy of OOPS. A friend
function still needs to be declared inside the class of which it is a friend. The advantage that a friend
function provides is that it is not called with respect to an object.

A global non-member function can be declared as a friend to a class. Member function of one class
can be declared as a friend function of another. An entire class can be declared as a friend of another
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too. A class or a function is declared friend to a desired class by prototyping it in the class and
prefixing the prototype with the keyword friend.

Only one copy of a static data member exists for the entire class. This is in contrast to non-static data
members that exist separately in each object. Static data members are used to keep data that relates
to the entire set of objects that exist at any given point during the program’s execution. A data
member is declared as a static member of a class by prefixing its declaration in the class by the
keyword static.

Static member functions can access static data members only. They can be called without declaring
any objects. A member function is declared as a static member of a class by prefixing its declaration
in the class by the keyword static.

Objects can appear as local variables inside functions. They can also be passed by value or by
reference to functions. Finally, they can be returned by value or by reference from functions.

Arrays of objects can be created. Arrays can be created inside classes also. One class can be defined
inside another class. Such a class is known as a nested class. The class that contains the nested class
is known as the enclosing class. Nested classes can be defined in the private, protected, or public
portions of the enclosing class.

Namespaces enable the C++ programmer to prevent pollution of the global namespace. They help
prevent name classes.

class

private access specifier
public access specifier
objects

scope resolution operator

the ‘this’ pointer

data abstraction

arrow operator

overloaded member functions
default values for formal arguments of member functions
inline member functions

constant member functions
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mutable data members

friend non-member functions

friend classes

friend member functions

friends as bridges

static member data

static member functions

namespaces

nested classes

[o—

— b e b e e
AN L B W N e

e A o B

How does the class construct enable data security?

What is the use of the scope resolution operator?

What is the ‘this’ pointer? Where and why does the compiler insert it implicitly?

What is data abstraction? How is it implemented in C++?

Which operator is used to access a class member with respect to a pointer?

What is the difference between a mutable data member and a static data member?
Describe the two ways in which a member function can be declared as an inline function.
How can a global non-member function be declared as a friend to a class?

What is the use of declaring a class as a friend of another?

Explain why friend functions do not contradict the principles of OOPS.

. Explain why static data members should be explicitly declared outside the class.
. Why should static data members be defined in the implementation files only?

. What is the use of static member functions?

. How do namespaces help in preventing pollution of the global namespace?

. What is a nested class? What is its use?

. How are the member functions of a nested class defined outside the definition of the enclosing

class?
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17. State true or false.

(1)
(i1)
(iit)
(iv)
(v)
(vi)
(vi1)

(viii)
(ix)
(x)
(xi)
(xii)

(xiii)
(xiv)

Structures in C++ can have member functions also.

Structure members are private by default.

The *this’ pointer is always a constant pointer.

Member functions cannot be overloaded.

Default values can be given to the formal arguments of member functions.

Only constant member function can be called for constant objects.

The keyword friend should appear in the prototype as well as the definition of the
function that is being declared as a friend.

A friend function can be prototyped in only the public section of the class.

Friendship is not transitive.

A static data member can be of the same type as the class of which it is a member.

The size of objects of an enclosing class is affected by the presence of nested classes.
An object of the nested class can be used in any of the member functions of the enclosing
class without the scope resolution operator.

An object of the nested class cannot be a member of the enclosing class.

Public members of the nested class’s object which have been declared in a function of
the enclosing class can always be accessed.

18. Your compiler should provide a structure and associated functions to fetch the current system
date. Suppose the name of the structure is ‘date_d’ and the name of the associated functions to
fetch the current system date is ‘getSysDate()’.

Create a class with a name that is similar to the above structure. This class should contain a
variable of the above structure as its private data member. Introduce a member function in the
class that calls the associated function of the date structure. Thus, create a wrapper class and
make an available structure safe to use.

class date D //a wrapper class

{
date_d d;
public:
void getSysDate() ;
}i

void date D::getSysDate ()

{

getSysDate (&d) ; //calling the associated function from
//the member function

Also, write a small test program to test the above class.
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19. Create a class named ‘Distance_mks’. This class should be similar to the class ‘Distance’,
except for the following differences:

e The data members of this new class would be ‘iMeters’ (type integer; for representing the
meters portion of a distance) and ‘fCentimeters’ (type float; for representing the centimeters
portion of a distance) instead of ‘iFeet’ and ‘finches’.

e Suitably designed member functions to work upon the new data members should replace
the ones that we have seen for the class ‘Distance’. The member functions should ensure
that the ‘fCentimeters’ of no object should ever exceed 100.
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Dynamic Memory Management

OVERVIEW

This chapter explains the use of tools that are available in C++ for dynamic
memory management. It begins with a brief explanation of static memory
management and its limitation. This is followed by an elucidation of the
mechanism of dynamic memory management.

The middle portion of the chapter deals with the use and usage of the new operator
and the delete operator. Methods for allocating and deallocating memory for
single objects and array of objects are explained.

The chapter also explains how the size of a dynamically allocated memory block
is stored.

The last portion of the chapter explains the use of the ‘set_new_handler()’ function
for specifying our own new handler.
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&

3.1 Introduction =

LAY

Let us have an overview of static memory management. Memory for program variables
gets allocated and deallocated during run time only. For example,

we write
int x;

in some function in the source code. When the source code containing this statement
(apart from the other statements) is compiled and linked, an executable file is generated.
Besides containing equivalent instructions for the other statements, the executable file
also contains the equivalent instructions for this statement. When the executable file is
executed, all the instructions contained inside it, including the ones to allocate memory
for °x’, are executed. Thus, memory gets allocated for 'x’during run time. This is known
as static memory allocation (although memory gets allocated during run time only).

The compiler writes instructions in the executable to deallocate the memory [a-viously
allocated for ‘x” when it encounters the end of the function, in which ‘x’ was declared. in
the source code. When the executable file is executed, all instructions contained inside it
including the ones to deallocate memory for ‘x’ are executed. Thus, memory for x’ gets
deallocated during run time. This is known as static memory deallocation (although
memory gets deallocated during run time only).

Static allocation and deallocation of memory has a limitation. It is rigid. The programmers
are forced to predict the total amount of data the program will utilize. They write statements
to declare pre-calculated amounts of memory. During run time, if more memory is required,
static memory allocation cannot fulfill the need. Once a certain memory block is no
longer of any use to the program, memory allocated to it cannot be released immediately.
The memory will continue to be held up until the end of the block in which the variable
was created.

Dynamic memory management is a feature provided and supported in C and C++. It
overcomes the drawbacks of static memory allocation. Just like in static memory allocation
and deallocation, in dynamic memory allocation and deallocation also, memory gets
allocated and deallocated during run time only. However, the decisions to do so can be
taken dynamically in response to the requirements arising during run time itself.

If the program is running and the user indicates the need to feed in more data,a memory
block sufficient to hold the additional amount of data is immediately allocated. For this,
code utilizing the relevant functions and operators provided by C and ('++ has to be
explicitly written in the source code. Again, once a certain block of memory is no longer
required, it can immediately be returned to the OS. For this again, code utilizing the
relevant functions and operators provided by C and C++ has to be explicitly written in
the source code. The OS can then allocate the deallocated memory block if the need
arises.
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3.2 Dynamic Memory Allocation

Dynamic memory allocation is achieved in C through the ‘malloc()’, ‘calloc()’, and
‘realloc()’ functions.(ln C++, it is achieved through the new operator. An illustrative
example and its explanation follow.

/*Beginning of dynamic.cpp*/
#include<iostream.h>
void main()
{
int * iPtr;
iPtr=new int;
*1Ptr=10;
cout<<*iPtr<<endl;

}

/*End of dynamic.cpp*/

Output
10

Listing 3.1 Using the new operator for dynamic memory allocation

[The word new is a keyword i in C++. It is an operator. It takes a predefined data type as an
operand (int in Listing 3.1)/ It then allocates memory to hold one value of the data type
that is passed as a parameter to it in the heap (four bytes in Listing 3.1)(Finally, it returns
the address of the allocated block. This address need not be explicitly typecast since the
new operator returns the address with the correct cast (int * in this case). This address
can then be stored in a pointer of an appropriate type (‘iPtr’ in this call). The allocated
block of memory can then be accessed through the pointer.

Statement: int * iptr;

1265

[

|
XXXX r four bytes
I

iPtr

Four bytes get allocated for iPtr containing junk
value at the bytes with addresses from 1265 to 1268 (say).

Diagram 3.1(i)) Dynamic memory allocation
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Statement: iPtr = new int;

t,713§i,,,7,,,, 8912
| |
| j
5972 XXXX ~ four bytes
| |
I .
iPtr

Diagram 3.1(ii) Dynamic memory allocation

The new operator allocates memory in the heap to hold one integer type value. Suppose,
the block from the byte with address 5972 to the byte with address 5975 gets allocated. The
new operator returns the base address of the block (5972). This value gets stored in ‘iPtr’.

Statement: *iPtr = 10;

1265 o _ 5972
} i
5972 ; | 10
J !
l i
| e
iPtr

Diagram 3.1(iii) Dynamic memory allocation

‘iPtr’ is dereferenced and the value 10 gets written into the memory block of four bytes
at which ‘iPtr’ points (5972 to 5975).

Statement; cout<<*iPtr<<endl;

1265 > 5972
| ; ‘
} 1 | i
\ ! |
. ser2 } 10
| | |
e e
iPtr

‘iPtr’ is again dereferenced and the value (10) stored in the
memory block to which ‘iPtr’ points (5972 to 5975) is read.

Diagram 3.1(iv) Dynamic memory allocation using the new operator

( The general syntax of the new operator is:

<pointer> = new <data_type>;/\'¢

'The new operator can be used to create multiple blocks of memory also. This is shown in
the following program (Listing 3.2).

i
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/*Beginning of DynArrayl.cpp*/
#include<iostream.h>

#define SIZE 10

void main()

{
int * iPtr;
iPtr = new int [SIZE];
for (int 1=0;i<SIZE;i++)
iPtr([il=1i; //can write cin>>iPtr[i]; also
for (int j=0;jJ<SIZE;Jj++)
cout<<iPtr[j]l<<endl;

}*End of DynArrayl.cpp*/
Output
0

1

2

3

4

5

6

7

8

9

Listing 3.2 Creating an array dynamically using the new operator

Statement: int * iPtr;

) 1265 .
| |
‘ XXXX | ( four bytes
| |
I
iPtr

Four bytes get allocated for ‘iPtr' containing junk value at
the bytes with addresses from, say, 1265 to 1268.

Diagram 3.2(i) Memory allocation for an array using ‘iPtr’

Statement: iPtr = new int[SIZE]; //SIZE=10
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The new operator allocates memory in the heap to hold ten integer type values [see
Diagram 3.2(ii)]. If the block from the byte with address 5972 to the byte with address
6012 gets allocated, the new operator returns the base address of the block 5972. This
value gets stored in ‘iPtr’. After this, ‘iPtr’ is simply dereferenced within the for loop by
using the subscript operator. All the elements of the array at whose first element the

1265 sz
‘ P ‘
5972 ‘ f XXXX Lfour bytes ,
iPtr f JL burbwesr
S
E KL burbwes‘
L . . 40 bytes

|

——

i

i
|
|
|
|
l

Diagram 3.2(ii) Dynamically allocating memory for an array using the new operator

pointer is pointing are accessed.(F he syntax for using the new operator to create an array
is as follows:

<pointer> = new <data_type>[<number_of_e1ements>]5

Now, let us make the program interactive to exploit the power of the new operator. The
value that we passed inside the subscript while allocating the memory using the new
operator can be that of a variable. In Listing 3.3, we will first ask the user to enter the size
of the array and store it in a variable. Next, we will pass the variable into the subscript
while using the new operator to allocate memory. The address returned by thenew operator
will then be stored in a pointer. F inally, we will access the array thus created through the
pointer. The program is shown Listing 3.3.

/*Beginning of DynArray2.cpp*/
#include<iostream.h>
void main()



}
/*
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int * iPtr;

unsigned int iSize;

cout<<“Enter the size of. the array : ”;

cin>>iSize;

iPtr = new int[iSize];

for(int i=0;i<iSize;i++)

{
cout<<“Enter the value for element "<<i+l<<®
cin>>iPtr{i];

1

for (int j=0;j<iSize;j++)
cout<<iPtr[jl<<endl;

End of DynArray2.cpp*/

Output

Enter the size of the array : 3<enter>
Enter the value for element 1 : 12<enter>
Enter the value for element 2 : 7<enter>
Enter the value for element 3 : 19<enter>

12
7
19
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Listing 3.3 Creating an array dynamically when its size is specified during run time

We must note that the new operator has enabled us to allocate memory dynamically. In
Listing 3.3, memory is getting allocated during run time (just like in static memory
allocation). However, the amount of memory to be allocated is being decided during run
time itself.

Same methodology can be applied for dynamically creating arrays of the otker predefined
fundamental data types. Arrays of class objects can also be created dynamically in the
same way. The following program (Listing 3.4) is a case in point.

/*
#i

Beginning of DynDist.cpp*/
nclude<iostream.h>

#include“Distance.h”
void main ()

{

Distance * dPtr;

unsgigned int iSize;

cout<<“Enter the number of elements : ”;
cin>>iSize;
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dPtr = new Distance[iSize];
for (int i=0;i<iSize;i++)

{

cout<<"“"Enter the feet : ”;
cins>a;

cout<<"“Enter the inches : ”;
cin>>b;

dPtr[i] .setFeet (a);

dPtr[i] .setInches(b) ;

}

for(int j=0;j<iSize;j++)

{

cout<<dPtr([j] .getFeet () <<™ *
<<dPtr[j] .getInches () <<endl;

}
}

/*End of DynDist.cpp*/

Output

Enter the number of elements : 3<enter>
Enter the feet : 1<enter>
Enter the inches : 1.1<enter>
Enter the feet : 2<enter>
Enter the inches : 2.2<enter>
Enter the feet : 3<enter>
Enter the inches : 3.3<enter>
11.1

222

333

Listing 3.4 Creating an array of objects dynamically during run time

In Listings 3.3 and 3.4, the user is explicitly asked to enter the size of the array he/she
wants to create. This is a little abrupt. Requirements for more memory may arise during
run time in a more subtle fashion (say, while creating data structures such as linked lists,
trees, etc.). Nevertheless, the basic technique of using the new operator remains the same.

3.3 Dynamic Memory Deallocation =

We already know that a block of memory allocated dynamically can be deallocated
dynamically. Once it is not in use any more, a dynamically allocated block of memory
should definitely be returned to the OS.

In C,(dynamic memory deallocation is achieved through the ‘free()’ function. Dynamicaily
allocated blocks of memory can be returned to the OS in C++ through the delete operator. -
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What is the need to deallocate a dynamically allocated block of memory? What will
happen if a dynamically allocated block of memory is not returned to the OS? These
questions are answered by the following program (Listing 3.5) and the explanatory diagram
(Diagram 3.3) that follows.

/*Beginning of memleak.cpp*/
#include<iostream.h>

void abc () ;

void main ()

abc(); //call to the abc() function
/*

rest of the main{() function
*/

void abc ()

{
int * iPtr;
iPtr = new int;
/*
rest of the abc() function

*/

/*End of memleak.cpp*/

Listing 3.5 Memory leak

The following statement executes from within the ‘abc()” function which is called from
the ‘main()’ function.

Statement: iPtr = new int;

As a result, the following scenario emerges.
1265 5972

—— -
: | | j ;

5972 1 l XXXX ! ? four bytes
; | L
|
J

N B

| IS —

iPtr
The new operator allocates memory in the heap to hold one integer type value. Suppose
the block from the byte with address 5972 to the byte with address 5975 gets allocated.
The new operator returns the base address of the block 5972. This value gets stored in
‘iPtr’.
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After ‘abc()’ finishes execution, memory for ‘iPtr’ itself is deallocated. But, the memory
in the heap area remains locked up as an orphan (unreferenced) locked up block of memory.

Diagram 3.3 Memory leak

As it can be seen from Diagram 3.3, after the ‘abc()’ function terminates, four bytes of
memory are lost. Since they have not been returned to the OS, they remain locked up.
This is known as a memory leak. If more memory is required, the OS will nor allocate
this block of memoryf‘/ fMdreover, this block of memory cannot be accessed since the only
pointer (‘iPtr’) that-was pointing at it has itself been removed from the stack.

This block of memory that is no longer of any use can and should be returned to the OS.

/A dynamically allocated block of memory can be deallocated by passing the pointer
pointing to it as an operand to the delete operator. For example, the following statement
should be inserted before the end of the ‘abe()” function in Listing 3.5.

delete iPtr;

The foregoing statement is executed just before the ‘abc()’ function terminates. The
memory block at which ‘iPtr’ points gets deallocated (it becomes available for the OS).
Next, the memory allocated for “iPtr’ itself is deallocated. Finally, the function terminates.

Thus, memory leak is preventfad.,,,\

When the new operator is used, the OS blocks a block of memory of the requested size.
The OS never allocates this particular block of memory in response to subsequent requests
for memory blocks as long as this block of memory is not deallocated{'When thedelete
operator is used on the pointer that points at this block of memory, the memory block
gets deallocated, that is, freed and made available for the OS In other words, the OS, in
response to subsequent requests for memory blocks, may allocate this freed block of
memory.

A dynamically allocated block of memory remaining locked up is frequently a blessing.
The fact that the block of memory locked up by the code in a certain function persists
even after the function terminates is frequently desirable. A called function may allocate
a memory block and a pointer local to the calling function can be made to point at it.
Even after the called function terminates, the dynamically allocated block of memory
will remain persistent, but not unreferenced. The following code illustrates this.
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void abc({int ** p)

{
/*
some complex algorithm

*/
*p = new int;

/*
rest of the abc{) function
*/
}
void main ()
{
int * iPtr;
abc (&1iPtr) ;
/*
rest of the main() function
*/
}

Listing 3.6 Making a dynamically allocated block of memory available to the calling function

In Listing 3.6, the address of ‘iPtr’ that is local to the calling function (‘main()’ function)
is passed as a parameter to the called function (‘abe()’ function). Its value needs to be
changed by the ‘abc()’ function. Its address is stored in a double pointer (a pointer to a
pointer has to be a double pointer). A block of memory is allocated and its address is
stored in ‘iPtr’ by dereferencing the pointer that points at it. It is our obvious desire that
the dynamically allocated block of memory persists even after the ‘abc()” function
terminates. After the ‘abc()’ function terminates, ‘iPtr’ that is a local variable in the
calling function will point at the dynamically allocated block of memory.

The general syntax of the delete operator to deallocate a single block of memory is:
delete <pointers;

In the foregoing listings, the memory block was deallocated only at the end of the functions
that allocated it. However, dynamic memory deallocation is usually conditional.

void abc (int ** p)

{

if (memory not reguired)

{

delete *p;
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*p = NULL;
}
/*

rest of the abc() function
*/

}

Listing 3.7 C++ allows deallocation of memory as and when required

A misconception about the de lete operator is due to the commonly used phrase ‘deleting
the pointer’. An uninitiated reader may think that the memory being occupied by the
pointer itself gets removed if the delete operator is used on the pointer. In reality,
nothing of this sort happens.

When the delete operator is used on a pointer, the pointer continues to occupy its own
block of memory and continues to have the same value that is the address of the first byte
of the block of memory that has just got deallocated. Thus, the pointer continues to point
at the same block of memory. This will lead to run-time errors if the pointer is dereferenced.

We can see in Listing 3.7 that the pointer being pointed at by ¢ p’ was deliberately nullified
after the memory that the pointer was pointing at had been deallocated. This is a very
common practice to indicate that the pointer (the pointer whose address is passed from
the calling function in this case) no longer points at a valid dynamically allocated block
of memory. In other words, it is highly desirable that either the pointer points at a valid
block of memory or be NULL. It is not possible to ensure this due to the low level of
representation of pointers. A pointer is unlikely to be NULL at the time of its creation.
But that does not mean that the value it contains is the address of some valid allocated
block of memory. There is no guaranteed initialization of data. This problem is solved
by the use of constructors, which have been discussed in Chapter 4.

A multiple block of memory is deallocated by suffixing the delete operator with an
empty pair of square brackets followed by the pointer that points at the multiple block of
memory.

int * iPtr;
iPtr = new int [10];

delete[] iPtr;

Listing 3.8 Deallocating memory that was allocated for an array
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If we write delete ‘iPtr’ instead of delete[] ‘iPtr’, only the first four bytes of the block
of 40 bytes at which ‘iPtr’ is pointing, at will be deallocated. Using delete[] deallocates
the entire block of 40 bytes. The syntax for using the ‘delete’ operator to deallocate an
array is as follows:

delete [] <pointers;

The size of the array to be created is passed as a parameter to the new operator. But while
deallocating the memory allocated for the array, the size is not passed (the square brackets
are empty). Then how does the compiler know how much of memory is to be deallocated?
The answer is that when the new operator executes to allocate a block of array, the OS
stores the size passed. The size of the memory block, which is captured during run-time,
is prefixed to the memory block itself. When the delete operator is used followed by
the empty pair of square brackets, the compiler uses the size stored and deallocates the
entire block correctly.

Size of memory block

i
I

¢ Memory block to hold 10 integers - »>

e

Diagram 3.4 Size of the allocated memory is prefixed to the memory block

Blocks of memory containing arrays of other types can also be deallocated similarly. For
example,

Distance * dPtr;
dPtr = new Distancel5]; //creates an array of 5 objects of
//the class Distance

delete(] dPtr; //de-allocates the memory
//allocated for the entire array

Listing 3.9 Deallocating memory that was allocated for an array of objects
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3.4 The set_new_handler() function

We already know tha( the new operator attempts to capture more chunks of memory from
the heap during run time. But, what happens if no more memory is available to satisfy
this attempt? We get an out-of-memory condition.

6 he new operator, when faced with an out-of-memory condition, calls a global function

and then throws an exception of type ‘bad_alloc’ (the chapter on exception handling

deals with the mechanism of throwing and catching exceptions). This global function is
own as the new handler function>

* We can specify our own new handler function also" We can specify that the new operator,
upon encountering an out-of-memory condition, calls a function of our choice. We can
do this by calling the ‘set_new_handler()’ function and passing the name of the desired
function as a parameter to it. The prototype of the ‘set_new_handler()’ function clarifies
this. This prototype is in the ‘new.h’ header file.

new_handler set_new_handler (new_handler) ;

(

Obviously, ‘new_handler’ is a data type. It is a function pointer type. The formal argument
of the ‘set_new_handler()’ function is a function pointer. If we pass the name of our
desired function as a parameter to the ‘set_new_handler()’ function. all subsequent out-
of-memory conditions cause the new operator to call it. Our desired function becomes
the new handler. Moreover, when the ‘set_new_handler()’ function is called, it returns a
pointer to the previous new handler function. \\/,

An illustrative example follows.

/*Beginning of newHandler.cpp*/
#define BIG _NUMBER 9999999

#include<new.h> //for set_new_handler() function
void myNewHandler ()
{

/*

code to handle out-of-memory condition
*/
S )

void main ()
{

new_handler oldHandler;
//set the function myNewHandler as the new handler

oldHandler = set_new_handler (myNewHandler) ;
int * p = new int[BIG_NUMBER]; //probably cause out-of-
//memory condition

}

/*End of newHandler.cpp*/

Listing 3.10 Specifying a new handler function
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If the OS is unable to allocate the requested amount of memory, which is quite likely in
Listing 3.10, the new operator fails. The new handler function gets called. The call to the
‘set_new_handler()’ function, just prior to the call to the new operator, has already set
the function ‘myNewHandler’ as the new handler. Therefore, the function
‘myNewHandler’ gets called.

( An important characteristic of the new operator is that when its request for memory fails,
it calls the new handler function repeatedly until its request is satisfied. This fact helps in
meaningfully defining the new handler function.

We can make the new handler function log an error message and then call the ‘abort()’
function.

void myNewHandler ()

{

//statement to log a suitable error message
abort () ;

}

Listing 3.11 Defining the new handler function

The “abort()’ function simply terminates the program. We can also throw an exception
from within the new handler function. The chapter on exception handling explains the
syntax for throwing exceptions and its superiority over calling the ‘abort()’ function.

<Another course of action is to replace the existing new handler function by another one.

/For this, we can call the ‘set_new_handler()’ function from within the existing new handler
function and pass the name of the new handler as a parameter to it} Of course, such a call
should be preceded by the code that attempts to resolve the out-of-memory condition
first. The new handler should be replaced only if this attempt fails.

#include<new.h>
void myNewHandler ()
{
//make an attempt to resolve the out-of-memory
//condition
if (above attempt_fails)
set#new_handler(myAnotherNewHandler);

}

Listing 3.12 Replacing the existing new handler function
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An interesting way of defining the new handler is to allocate some buffer memory in
advance and free it part by part as the need arises.

Memory is allocated for program variables during run time only. In static memory allocation, the
amount of memory to be allocated is decided during compile time itself. The instance at which each
statically allocated variable would get created during the program’s execution is also decided during
the program’s compilation.

On the other hand, the amount of memory to be allocated is decided during run time in case of
dynamic memory allocation. Moreover, memory can be allocated in response to conditions that
arise during run time.

C++ provides the ‘new’ operator for allocating memory dynamically. The syntax of the ‘new’ operator
for allocating memory for a single block is:

<pointer> = new <data_type>;

The new operator allocates enough memory in the heap area to accommodate one variable of the
data type that is passed as its right-hand-side operand. Further, it returns the address of the first byte
of this allocated block of memory that can be stored in the pointer on the left-hand-side of the
assignment operator as shown in the above statement.

Memory for an array can be allocated by using the new operator. The syntax is as follows:

<pointer> = new <data_type> [<number of elementss];

Again, dynamically allocated memory can be dynamically deallocated in response to conditions
that arise during run time. Dynamically allocated memory must be deallocated, that is, returned to
the Operating System. Otherwise, memory leak would occur.

C++ provides the delete operator for deallocating dynamically allocated memory. The syntax of
the delete operator for deallocating memory earlier allocated for a single block is:

delete <pointers;
The delete operator deallocates the memory in the heap area that the pointer that i- passed as its
right-hand-side operand points at.

Memory allocated dynamically for an array can also be deallocated by using the delete operator.
The syntax is as follows:

delete [] <pointers;
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This version is similar to the previous one with the difference that an empty pair of square brackets
appears between the delete keyword and the name of the pointer. C++ knows the exact number of
bytes to be returned. It stores the size of the dynamically allocated block in a block of memory that
it prefixes to the allocated block of memory itself. The ‘set_new_handler()’ function enables us to
set a function of our choice as the new handler function.

static memory allocation

static memory deallocation
dynamic memory allocation
dynamic memory deallocation
new operator

delete operator
set_new_handler() function

new handler function

1. What is static memory allocation?

2. When is memory allocated and deallocated in static memory allocation—during compile time,
link time, or run time?

3. Under what conditions does static memory allocation become unsuitable?
4. What is dynamic memory allocation? How is it different from static memory allocation?

5. When is memory allocated and deallocated in dynamic memory allocation— during compile
time, link time, or run time?

6. Under what conditions does the use of dynamic memory allocation become mandatory?
7. What is the syntax of the ‘new’ operator for

(i) allocating memory for a single variable?

(ii) allocating memory for an array?

8. Describe how additional blocks of memory can be captured in C++ during run time based
upon existing run time conditions?
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10.

11.
12.
13.
14.

Object-Oriented Programming with C++

What is the syntax of the ‘delete’ operator for
(i) deallocating memory that has been allocated for a single variable?
(ii) deallocating hemory that has been allocated for an array?

The size of the array, whose memory is to be deallocated, is not passed to the ‘delete’ operator.
How does the compiler determine this size?

What is memory leak?
How can the delete operator be used to prevent a memory leak?
What is an out-of-memory condition?

What is the ‘new handler’? How is the ‘set_new_handler()" function used to set our own new
handler?



Chapter4

Constructors and Destructors

OVERVIEW

We are already aware of the need to include a member function in our class that
initializes the data members of its class to desired default values and gets called
automatically for each object that has just got created. Constructors fulfill this
need and the first portion of this chapter deals with constructors. Various types
of constructors are described in the middle portion of this chapter.

There is also the need to include a member function in our class that gets called
automatically for each object that is going out of scope. Destructors fulfill this
need and the penultimate portion of this chapter deals with destructors.

Along with the class construct and the access specifiers, constructors and
destructors complete the requirements needed to created new data type—safe
and efficient data types. This is discussed in the last portion of this chapter.
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4.1 Constructors s

BRI RS R S R s

‘/The constructor gets called automatically for each object that has just got created..It
appears as member function of each class, whether it is defined or not. It has the same
name as that of the class/It may or may not take parameters. It does not return anything
(not even void). The prototype of a constructor is:

<class name> (<parameter lists);

The need for a function that guarantees initialization of member data of a class was felt
in Chapter 2. Constructors fulfill this need. Domain constraints on the values of data
members can also be implemented via constructors. For example, we want the value of
data member ‘finches’ of each object of the class ‘Distance’ to be between 0.0 and 12.0
at all times within the lifetime of the object. But this condition may get violated in case
an object has just got created. However, introducing a suitable constructor to the class
‘Distance’ can enforce this condition.

"The compiler embeds a call to the constructor for each object when it is created. Suppose
a class A has been declared as follows:

/*Beginning of A.h*/

class A

{ _
int x;

public:

void setx(const int=0);
int getx();

}i

/*End of A.h*/

Consider the statement that declares an object of a class A in the following listing (Listing
4.1).

/*Beginning of AMain.cpp*/
#include“A.h”
void main ()

{

A Al; //object declared .. constructor called

/*End of AMain.cpp*/

Listing 4.1 Constructor gets called automatically for each object when it is created
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The statement in the function ‘main()’ in Listing 4.1 is transformed into the following
statements.

A Al; //memory allocated for the object (four bytes)
Al.A(); //constructor called implicitly by compiler

The second statement above is then transformed to
A (&A1) ; //see‘Chapter 2

Similarly&he constructor is called for each object that is created dynamically in the heap
by the new operator.

A~ Aptr;
APtr = new A; //constructor called implicitly by compiler

The second statement above is transformed into the following two statements.

APtr = new A; //memory allocated
APtr->A(); //constructor called implicitly by compiler

!

The second statement above is then transformed into
A(APtr); //see Chapter 2

The foregoing explanations make one thing very clear. Unlike their name, constructors
do not actually allocate memory for objects. They are member functions that are called
for each object immediately after memory has been allocated for the object.*

The constructor is called in this manner separately for each object that is created. But did
we prototype and define a public function with the name ‘A()’ inside the class A? The
answer is ‘no’. Then how did the above function call get resolved? The compiler prototypes
and defines the constructor for us. But what statements does the definition of such a
constructor have? The answer is ‘nothing’.

Before

class A ' , b

{
public:

//no constructor

bi
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After

class A

{

public:
A(); //prototype inserted implicitly by compiler

A::A()

//empty definition inserted implicitly by compiler

}

As we can see, the name of the constryctor is the same as the name of the class. Also, the
constructor does not return anything/ The compiler defines the constructor in order to
resolve the call to the constructor that it compulsorily places for the object being created.

For reasons that we will discuss later, it is forbidden to call the constructor explicitly for
an existing object as follows.

Al.A(); //not legal C++ code!

The Zero-argument Constructor

We can and should define our own constructors if the need arises. If we do so, the compiler
does not define the constructor. However, it still embeds implicit calls to the constructor
as before.

p

. The constructor is a non-static member function. It is called for an object. It, therefore,
takes the ‘this’ pointer as a leading formal argument just like other non-static member
functions. Correspondingly, the address of the invoking object is passed as a leading
parameter to the constructor call. This means that the members of the invoking object
can be accessed from within the definition of the constructor.

Let us add our own constructor to class A defined in Listing 4.1 and verify whether the
constructor is actually called implicitly by the compiler or not.

/*Beginning »f A.h*/
class A

{

int x;
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public:
A(); //our own constructor
void setx(const int=0);
int getx();
}i

/*End of A.h*/

/*Beginning of A.cpp*/

#include“A.h"

#include<iostream.h>

A::A() //our own constructor

{

cout<<“Constructor of class A called\n”;

/*

definitions of the rest of the functions of class A
*/
/*End of A.cpp*/

/*Beginning of AMain.cpp*/
#include“A.h"
void main()

{

A Al;

cout<<“End of program\n”;
}
/*End of AMain.cpp*/
Output
Constructor of class A called
End of program

Listing 4.2 Constructor gets called for each object when the object is created

Let us now define our own constructor for the class ‘Distance’. What should the constructor
do to the invoking the object? We would like it to set the values of the ‘iFeet’ and ‘fInches’
data members of the invoking object to 0 and 0.0, respectively. Accordingly, let us add
the prototype of the function within the class definition in the header file and its definition

in the library source code.

/*Beginning of Distance.h*/
class Distance
public:
Distance () ; //our own constructor

/-k
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rest of the class Distance
*/

/*End of Distance.h*/

/*Beginning of Distance.cpp*/
#include“Distance.h”

Distance: :Distance () //our own constructor
{
iFeet=0;
fInches=0.0;
/*
definitions of the rest of the functions of class
Distance
*/

/*End of Distance.cpp*/

/*Beginning of DistTest.cpp*/
#include<iostream.h>
#include“Distance.h”

void main()

{
Distance dl; //constructor called
cout<<dl.getFeet () << ”"<<dl.getInches();
}
/*End of DistTest.cpp*/
Output
00.0

Listing 4.3 A user-defined constructor to implement domain constraints on the data
members of a class

Now, due to the presence of the constructor within the class ‘Distance’, there is a
guaranteed initialization of the data of all objects of the class ‘Distance’. Our objective
of keeping the ‘fInches’ portion of all objects of the class ‘Distance’ within 12.0 is now
fulfilled.

The constructor that we have defined in Listing 4.2 does not take any arguments and is
called the zero-argument constructor. The constructor provided by default by the compiler
also does not take any arguments. Therefore, the terms ‘zero-argument constructor’ and
‘default constructor’ are used interchangeably.

Now let us start the study of a class that will enable us to abstract character arrays and
overcome many of the drawbacks that exist in them. This class will be our running example
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for explaining most of the concepts of this book. We will define it incrementally. Our
puspose is to ultimately define a class that can be used instead of character arrays.

/ Let us call the class ‘String’. It will have two data members. Both these data members
will be private. The first data member will be a character pointer. It will point at a
dynamically allocated block of memory that contains the actual character array. The

other data member will be a long unsigned integer that will contain the length of this
character array.

/*Beginning of String.h*/
class String

{
char * cStr; //character pointer to point at
//the character array
long unsigned int len; //to hold the length of the
//character array
/*
rest of the class String
*/
}i

/*End of String.h*/
Suppose ‘s1’ is an object of the class ‘String’ and the string ‘abc’ has been assigned to it.
Diagrammatically this situation can be depicted as follows. (See Diagram 4.1).

27 101

- T

cStr

|
\
|

len

Diagram 4.1 Memory layout of an object of the class ‘String’

The address of the first byte of the memory block containing the string is 101. This value
is stored in the ‘cStr’ portion of ‘s1’. The address of ‘s1’ is 27.

Also, we would religiously implement the following two conditions on all objects of the
class ‘String’.

1. ‘cStr’ should either point at a dynamically allocated block of memory exclusively
allocated for it (that is, no other pointer should point at the block of memory being
pointed at by ‘cStr’) or ‘cStr’ should be NULL.

2. There should be no memory leaks.
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Obviously, when an object of the class ‘String’ is created, the ‘cStr’ portion of the object
should be initially set to NULL (and ‘len’ should be set to 0). Accordingly, the prototype
and the definition of the constructor are as shown in Listing 4.4.

/*Beginning of String.h*/
class String
{
char * cStr;
long unsigned int len;
public:
String(); //prototype of the constructor
/*
rest of the class String
*/
}i
/*End of String.h*/

/*Beginning of String.cpp*/
#include“String.h”

String::String() //definition of the constructor
{ //When an object is created ..
cStr=NULL; //.nullify its pointer and.
len=0; //..set the length as zero.
}
/*
definitions of the rest of the functions of class String
*
/

/*End of String.cpp*/

Listing 4.4 A user-defined constructor

Parameterized Constructors

Constructors take arguments and can, therefore, be overloaded. Suppose, for the class
‘Distance’, the library programmer decides that while creating an object, the application
programmer should be able to pass some initial values for the data members contained in
the object. For this, he/she can create a parameterized constructor as follows.

/*Beginning of Distance.h*/
class Distance
{
public:
Distance () ; //prototypes provided by the
//library programmer
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Distance (int, float); //prototype of the parameterized
//censtructor
/*
rest of the class Distance
*/

/*End of Distance.h*/

/*Beginning of Distance.cpp*/
#include"Distance.h”
Distance::Distance ()
iFeet=0;
fInches=0.0;
}
Distance::Distance(int p, float Qq)
iFeet=p;
setInches(q) ;

}
/*

definitions of the rest of the functions of class
Distance

*/

/*End of Distance.cpp*/

/*Beginning of DistTestl.cpp*/
#include<iostream.h>
#include“Distance.h”

void main ()

{

Distance di1(1,1.1); //parameterized constructor called
cout<<dl.getFeet () <<™ “<<dl.getInches();

}

/*BEnd of DistTestl.cpp*/

Output

11.1

Listing 4.5 A user-defined parameterized constructor called by creating an object in the
stack

Listing 4.5 demonstrates a user-defined parameterized costructor being called by creating
an object in the stack while Listing 4.6 demonstrates a user-defined parameterized
constructor being called in the heap.
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/*Beginning of DistTest2.cpp*/

#include<iostream.h>

#include“Distance.h”

void main()

{
Distance * dPtr;
dPtr = new Distance(l,1.1); // parameterized

//constructor called Output

cout<<dPtr->getFeet ()<<“ "<<dPtr->getInches();

}

/*End of DistTest2.cpp*/

Output
b1t

Listing 4.6 A user-defined parameterized constructor—calied by creating an object in the
heap

The first line of the function ‘main()’ in Listing 4.5 and the second line of the ‘main()’
function in Listing 4.6 show the syntax for passing values to the parameterized constructor.

(The parameterized constructor is prototyped and defined just like any other member
function except for the fact that it does not return any value.>

We must remember that 6f the parameterized constructor is provided and the zero-argument
constructor is not provided, the compiler will not provide the default constructor. In such
a case, the following statement will not compile.

Distance di; )//ERROR: No matching constructor

Just like in other member functions. the formal arguments of the parameterized constructor
can be assigned default values. But in that case, the Zero-argument constructor should be
provided. Otherwise, an ambiguity error will arise when we attempt to create an object
without passing any values for the constructor.

/*Beginning of Distance.h*/
class Distance

{

public:
//Distance () ; zero-argument constructor commented out
Distance(int=0, float=0.0) ; //default values given
/*

rest of the class Distance

*/
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b

/*End of Distance.h*/

Listing 4.7 Default values given to parameters of a parameterized constructor make the
zero-argument constructor unnecessary

If we write,
Distance dl;

an ambiguity error arises if the zero-argument constructor is also defined. This is because
both the zero-argument constructor as well as the parameterized constructor can resolve
this statement.

Let us now create a parameterized constructor tor the class “String”. We will also assign
a default value for the argument of the parameterized constructor. The constructor would
handle the following statements.

String sl (“abc”);

OR

char * cPtr = “abc”;
String sl (cPtr};

OR

char cArr[10] = “abc”;

String sl (cArr);

In each of these statements, we are essentially passing the base address of the memory
block in which the string itself is stored to the constructor.

In the first case, base address of the memory block of four bytes in which the string “abc”
is stored is passed as a parameter to the constructor. But the constructor of the class
‘String’ should be defined in such a manner that ‘s1.cStr’ is made to point at the base of
a different memory block of four bytes in the heap area that has been exclusively allocated
for the purpose. Only the contents of the memory block, whose base address is passed to
the constructor, should be copied into the memory block at which *s1.cStr’ points. Finally,
‘sl.len’ should be set to 3. The formal argument of the parameterized constructor for the
class ‘String’ will obviously be a character pointer because the address of a memory
block containing a string has to be passed to it. Let us call this pointer ‘p’. Then, after the
statements String sl (“abc”) ; executes, the following scenario should emerge.
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50

50 > a b c \C

27
101

cStr 101 . » a b c \0

len 3

s1
Diagram 4.2 Assigning a string to an object of the class 'String’

[n Diagram 4.2, *p’ is the formal argument of the constructor. The address of the memory
block that contains the passed string is 50. This address is passed to the constructor and
stored in ‘p’. Therefore, the value of *p’ is 50. But the constructor should execute in such
a manner that a different block that is sufficiently long to hold the string at which ‘p’ is
pointing should also be allocated dynamically in the heap area. (See Diagram 4.2). This
memory block extends from byte numbers 101 to 104. The base address of this block of
memory is then stored in the pointer embedded in “s1’. The string is copied from the
memorY block at which *p’ points to the memory block at which ‘s1.cStr’ points. Finally,
‘sl.len’ is appropriately set to 3.

In the second case
char * cPtr = “abc”;
String sl (cPtr);

the value of ‘cPtr’ is passed as a parameter to the constructor. This value is stored in ‘p’.
Thus, ‘p’ and *cPtr’ both point at the same place. As in the previous case, the constructor
of the class ‘String’ should be defined in such a manner that *s1.cStr’ should be made to
point at the base of a different memory block of four bytes that has been exclusively
allocated for the purpose. Only the contents of the memory block whose base address is
passed to the constructor should be copied into the memory block at which ‘sl.cStr’
points.

In Diagram 4.3, ‘cPtr’ points at the memory block containing the string. In other words.
the value of ‘cPtr’ is the address of the memory block containing the string.

The third case
char cArr[10] = “abc”;
String sl (cArr);

is very similar to the second. In this, we are passing the name of the array as a parameter
to the constructor. But we know that the name of an array is itself a fixed pointer that



Constructors and Destructors 133

50

27

cStr 101 e a b c \0

len 3
51
Diagram 4.3 Assigning a string to an object of the class ‘String’

contains the base address of the memory block containing the actual contents of the
array. This can be seen in Diagram 4.4.

—
cArr

27

cStr 101 - > 3 b . ¢ 0

len 3

s1
Diagram 4.4 Assigning an array to an object of the class "String’
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Let us now define the constructor that produces these effects. We must realize that p’
(the formal argument of the constructor) should be as follows:

const char * const

First, it should be a constant pointer because throughout the execution of the constructor.
it should continue to point at the same memory block. Second. it should be a pointer to a
constant because even inadvertently, the library programmer should not dereference it to
change the contents of the memory block at which it is pointing. Additionally, we would
like to specify a default value for ‘p” (NULL) so that there is no need to separately define
a zero-argument constructor.

The definition of the class *String” along with the prototype of the constructor and its
definition are as follows.

/*Beginning of String.h*/

class String

{
char * cStr;
long unsigned int len;

public:
/*no Z€ro-argument constructor*/
String{const char * const p = NULL) ;
const char * getString{);
/*
rest of the class String

*/

}i

/*End of String.h*/

/*Beginning of String.cpp*/
#include"“String.h”
#include<string.h>
String::String(const char * const p)

if (p==NULL)} //if default value passed..
cStr=NULL; //.nullify
len=0;
else //..otherwise..
len=strlenip);
cStr=new char(len+1] ; CadynaviTally o aliocate a
‘/separate memory klock

strcpy (cStry,p) ; //.and copy into it
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const char * String::getString()

return cStr;

}
/*

definitions of the rest of the functions of class String
*/’
/*End of String.cpp*/
/*Beginning of StringMain.cpp*/
#include“String.h”
#include<iostream.h>

void main()
{

S
String sl (“abc”); //pass a string to the
//parameterized constructor
cout<<sl.getString()<<endl; //display the string

/*End of StringMain.cpp*/

Output
abc

Listing 4.8 A user-defined parameterized constructor for acquiring memory outside the
object

Another function called *getString()” has also been introduced to the class *String’. It
will enable us to display the string itself. The function returns a const char * so that
only a pointer to a constant can be equated to a call to this function.

const char * p = sl.getString();

Such a pointer will effectively point at the same memory block at which the invoking
object’s pointer points. As a result of the above statement both ‘p” and “sl .cStr’ would
end up pointing at the same place. Yet it will not be able to change the values contained
in the memory block since it is a pointer to a constant. We must note that for securing
data that is outside the object itself, extra efforts are required on the part of the library
programmer.

We can reprogram the above ‘main()’ function and verify that the newly defined
constructor is capable of producing the effects depicted in Diagrams 4.2, 4.3, and 4.4.

Copy Constructor

k_Thc copy constructor is a special type of parameterized constructor) As its name implies,

( it copies one object to anothet' It is called when an object is created and equated to an
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existing object at the same time. The copy constructor is called for the object being
created. The pre-existing object is passed as a parameter to it.\ The copy constructor
member-wise copies the object passed as a parameter to it into the object for which it is
called.

If we do not define the copy constructor for a class, the compiler defines it for us. But in
either case, a call is embedded to it under the following three circumstances.

¢ When an object is created and simultaneously equated to another existing object,
the copy constructor is called for the object being created. The object to which
this object was equated is passed as a parameter to the copy constructor.

A Al; //zero-argument /default constructor called
A A2=A1; //copy constructor called

or

A A2(Al); //copy constructor called

or

A * APtr = new A(Al); //copy constructor called

Here the copy constructor is called for ‘A2’ and for ‘Aptr’ while ‘A1’ is passed as
a parameter to the copy constructor in both cases.

e When an object is created as a non-reference formal argument of a function. The
copy constructor is called for the argument object. The object passed as a parameter
to the function is passed as a parameter to the Copy constructor.

void abc(A);
A Al; //zero-argument/default constructor called
abc (A1) ; //copy constructor called

void abc (A A2)
R
/*
definition of abc ()
*/
}

Here again the copy constructor is called for ‘A2’ while ‘A1’ is passed as a
parameter to the copy constructor.

e When an object is created and simultaneously equated to a call to a function that
returns an object. The copy constructor is called for the object that is equated to
the function call. The object returned from the function is passed as a parameter
to the constructor.
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A abc()
{
A Al; //zero-argument/default constructor called
/*
remaining definition of abc()
*/

return Al;

}

A A2=abc(); //copy constructor called

Once more, the copy constructor is called for ‘A2’ while ‘A1’ is passed as a
parameter to the copy constructor.

The prototype and the definition of the default copy cggs}rfugggr,dgﬁned by the compiler
are as follows. e

class A

{
public:
A (A&) ; //the default copy constructor

}i

A::A (A& AOBj) //the default copy constructor

{

*this=AObj; //copies the passed object into the invoking
//object

As is obvious, the default copy constructor does exactly what it is supposed to do—it
copies. The statement

A A2=Al;
is converted as follows:

A A2; //memory allocated for A2
A2 .A(Al); //copy constructor is called for A2 and Al is
//passed as a parameter to it

This last statement is then transformed to
A(&A2,Al); //see the section on ‘this’ pointer in Chapter 2

When the above statement executes, ‘AObj’ (the formal argument in the copy constructor)
becomes a reference to ‘Al’, whereas the ‘this’ pointer points at ‘A2’ (the invoking
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object). Similarly. the other statements where the object is created as a formal argument
or is returned from a function can also be explained.

But why does the compiler create the formal argument of the default copy constructor as
areference object? And when the compiler does define a copy constructor in the expected
way, then why should we define one on our own? Both these questions are answered
now.

First, let us find out why objects are passed by reference to the copy constructor. Suppose
the formal argument (‘AObj’) of the copy constructor is not a reference. Now, suppose
the following statement executes.

A A2=A1;

The copy constructor will be called for *A2" and *A 1" will be passed as a parameter to it.
Then the copy constructor will be called for *AObj" and *A 1" will be passed as a parameter
to it. This is because ‘AODbj’ is a non-reference formal argument of the copy constructor.
Thus, an endless chain of calls to the copy constructor will be initiated. However, if the
formal argument of the copy constructor is a reference, then no constructor (not even the
copy constructor) will be called for it. This is because a reference to an object is not a
separate object. No separate memory is allocated for it. Therefore, a call to a constructor
is not embedded for it.

Now we come to a crucial question. Why should we define our own copy constructor?
After all. the default copy constructor (which is provided free of cost by the complier)
does a pretty decent job. First, recollect the conditions we decided to implement for all
objects of the class ‘String’( Suppose an object of the class ‘String’ is created and at the
same time equated to another object of the class. For example.

String sl (“abc”) ;
String s2=s1; //copy constructor is called for s2 and si
//is passed as a parameter to it

Since we have not defined the copy constructor for the class *String’, the compiler has
done it for us. What does this default copy constructor do in the above case? It simply
copies the values of *s1” to *s2’! This means that the value of *s2.cStr” becomes equal to
"sl.cStr’. Thus, both the pointers point at the same place! This is certainly a violation of
our conditions. The behavior of the default copy constructor is undesirable in this case.
To overcome this problem of the default copy constructor, we must define our own copy
constructor.

From within the copy constructor of the class ‘String’, a separate memory block must be
first allocated dynamically in the heap. This memory block must be equal in length to
that of the string at which the pointer of the object passed as a parameter (‘s1’ in this
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case) points. The pointer of the invoking object (‘s2” in this case) must then be made to
point at this newly allocated memory block. The value of ‘len’ variable of the invoking
object should also be set appropriately. However, if the pointer in the object passed as a
parameter is NULL, then the value of the pointer and ‘len’ variable of the invoking
object must be set to NULL and zero, respectively.

Accordingly, the prototype and the definition of the copy constructor of the class *String’
appear as follows.

/*Beginning of String.h*/
class String

{
char * cStr;
long unsigned int len;

public:
String(const Stringé&) ; //our own copy constructor
/*
rest of the class String

*/

}i

/*End of String.h*/

/*Beginning of String.cpp*/

#include"String.h”

#include<string.h>

String::String(const String& ss) //our own copy
//constructor

{

if (ss.cStr==NULL) //if passed object’s pointer is NULL..
{
cStr=NULL; //.. then nullify the invoking object’s
//pointexr too
len=0;
f
else //otherwise..
{
len=strlen(ss.len);

cStr = new char[len+l]; //..dynamically allocate a
//separate memory block
strcpy (cStr,ss.cStr) ; //..and copy into it

}
}
/*End of String.cpp*/
/*Beginning of StringMain.cpp*/

#include*String.h”
#include<iostream.h>
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void main ()

{
String sl (“akc”);
String s2=s1;
cout<<sl.getString()<<endl;
cout<<s2.getString()<<endl;

}

/*End of StringMain.cpp*/

Output
abc
abc

Listing 4.9 A user-defined copy constructor

In the copy constructor (Listing 4.9), the formal argument is a constant. It has to be a
reference in order to prevent an endless chain of calls to itself. But at the same time the
library programmer would certainly want to prevent even an inadvertent change in the
values of the object that gets passed to the copy constructor. He/she would like the compiler
to report a compile-time error if he/she inadvertently writes statements like the following.

S§s.cStr=NULL; //pointer of parameter object modified!
ss.len++; //len variable of the parameter object
//modified!

4.2 Destructors

/" The destructor gets called for each object that is about to go out of scope. It appears as a
member function of each class whether we define it or not. It has the same name as that
of the class but prefixed with a tilde sign. It does not take parameters. It does not return
anything (not even void). The prototype of a destructor is:

~ <class name> ();

The need for a function that guarantees deinitialization of member data of a class and
frees up the resources acquired by the object during its lifetime will be explained soon.
Destructors fulfill this need.

The compiler embeds a call to the destructor for every object when it is destroyed. Let us
have one more look at the main() function of Listing 4.1.

void main ()

{

A Al;
} //Al goes out of scope here
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A1’ goes out of scope just before the main() function terminates. At this point, the
compiler embeds a call to the destructor for ‘A1’. It embeds the following statement.

Al.~A(); //destructor called .. not legal C++ code

An explicit call to the destructor for an existing object is forbidden. The above statement
is then transformed into

~A(&Al); //see chapter 2

The destructor will also be called for an object that has been dynamically created in the
heap just before the ‘delete’ operator is applied on the pointer pointing at it.

A * APtr;
APtr = new A; //object created .. constructor called

delete APtr; //object destroyed .. destructor called

The last statement is transformed into

APtr->~A(); //destructor called for *APtr
delete APtr; //memory for *APtr released

First, the destructor is called for the object that is going out of scope. Thereafter, the
memory occupied by the object itself is deallocated. The second last statement above is
transformed into

~A(APtr); //see the section on the ‘this’ pointer in chapter 2

Unlike its name, the destructor does not *destroy’ or deallocate memory that an object
occupies. It is merely a member function that is called for each object just before the
object goes out of scope (gets destroyed).

As can be readily observed, the compiler embeds a call to the destructor for each and
every object that is going out of scope. But we did not prototype and define the destructor
inside the class. Then how was the above call to the destructor resolved? The compiler
prototypes and defines the destructor for us. But what statements does the definition of
such a destructor have? The answer is ‘nothing’. An example of a compiler-defined
destructor follows.
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Before

class A

{
public:

//no destructor

~A(); //prototype inserted implicitly by compiler

//empty definition inserted implicitly by compiler

Let us add our own destructor to the class A defined in Listing 4.2 and verify whether the
destructor is actually called implicitly by the compiler or not.

/*Beginning of A.h*/
class A

{
int x;
public:
A();
void setx(const int=0);
int getx();
~A() ; //our own destructor
}i

/*End of A.h*/

/*Beginning of A.cpp*/
#include™A.h”
#include<iostream.h>
A::A()

{
}

cout<<“"Constructor of class A called\n”;
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A::~A() //our own destructor

cout<<“Destructor of class A called\n”;

}

/ *
/
definitions of the rest of the functions of class A
*/ .
/*End of A.cpp*/

/*Beginning of AMain.cpp*/
#include“A.h”
#include<iostream.h>

void main()

A Al;
cout<<“End of program\n”;

}

/*End of AMain.cpp*/

Output

Constructor of class A called
End of program
Destructor of class A called

Listing 4.10 Destructor gets called for each object when the object is destroyed

As we can see, the name of the destructor is the same as the name of the class but
prefixed with a tilde sign. Moreover, the destructor does not return anything. The compiler
defines the destructor in order to resolve the call to the destructor that it compulsority
places for the object going out of scope.

/ Destructors do not take any arguments. Therefore, they cannot be overloaded. >

Why should we define our own destructor? We must remember that the destructor is also
a member function. It is called for objects. Therefore, it can access the data members of
the object for which it has been called.

Let us think of a relevant definition for the destructor of the class ‘Distance’. What
would we like it to do for us? What should it do to the data members of the object that is
going out of scope? Should it set them to zero?

Distance::~Distance () .
iFeet=0;
fInches=0.0;

}
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But what is the use? The object is anyway going out of scope immediately after the
destructor executes.

But we must define the destructor for classes whose objects, during their lifetime, acquire
resources that are outside the objects themselves. Let us take the example of the class
‘String’. We consider the following code block.

{
String sl (“abc”);

}

The memory that was allocated to ‘s1” itself gets deallocated when this block finishes
execution. But ‘s1.cStr’ was pointing at a memory block that was dynamically allocated
in the heap area. This memory block was outside the memory block occupied by ‘s1’
itself. After ‘s1’ gets destroyed, this memory block remains allocated as a locked up lost
resource. The only pointer that was pointing at it (‘s1.cStr’) is no longer available. This
is memory leak. It should be prevented. We should deallocate the memory block at which
the pointer inside any object of the class ‘String’ is pointing exactly when the object goes
out of scope. This means that we must call the delete operator for the pointer inside the
class ‘String’ and place this statement inside the destructor.

/*Beginning of String.h*/
class String

{
char * cStr;
long unsigned int len;
public:
~String() ; //our own destructor
/*
rest of the class String
*/

}i

/*End of String.h*/

/*Beginning of String.cpp*/
#include“String.h”
#include<string.h>
String::~String() //our own destructor
{
if (cStr!=NULL) //1if memory exists
delete[] cStr; //.. destroy it
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/*

definitions of the rest of the functions of class String
*/
/*End of String.cpp*/

Listing 4.11 A user-defined destructor

4.3 The Philosophy of OOPS oo

Now, let us digress and appreciate the basic philosophy of OOPS. One of the aims in
OOPS is to abolish the use of fundamental data types. Classes can contain huge amounts
of functionality (member functions) free the application programmer from the worry of
taking precautions against bugs.

The class ‘String’ is one such data type. By adding some more relevant functions, we can
conveniently use objects of the class ‘String’. Consider adding the following function to
the class ‘String’.

void String::addChar (char) ; //function to add a character
//to the string

As its name suggests, this function will append a character to the string at which the
pointer inside the invoking object points.

String sl (“abc”);

As a result of this statement, the pointer inside ‘s1’ points at a memory block of four
bytes (last one containing NULL). Now if we write

sl.addChar('d’) ; //add a character to the string

the following things should happen.
o Another block of five bytes should get allocated.

e The string contained in the memory block at which ‘sl.cStr’ is currently pointing
should get copied into this new memory block.

e The character ‘d’ should get appended to the string.
¢ The null character should get further appended to the string.
e ‘sl.cStr’ should be made to point at this new memory block.

e The memory block at which ‘s1.cStr’ was pointing previously should be deallocated
(to prevent memory leaks).
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The following shows adding a character to a stretchable string in the object-oriented
way.

Before
String sl(“abc”);

27 101

len

27 101
7"“7 QT -—'_I'___T"'"—';
[ I a I b I ¢ I 0 |,
cStr | 201 | R
]
| | 201
len | 4 I . —— - N
. a " b - d \0 |
¢ I Lo R

Diagram 4.5 Adding a character to a stretchable string—the object oriented way

One possible way of using this function is by using a loop to obtain a string from the user,
which can be of any length. While writing the program, the application programmer
need not predict the length of the string the user will enter. The following code can be
used for adding a character to a stretchable string in the object-oriented way.

while (1) //potentially infinite loop

{
ch=getche () ;
if (ch=='\n") //if user finishes entering the string
break; //.. break the loop
sl.addChar (ch) ; //..else append the character to it
!

As the user keeps adding characters to the string, the allocated memory keeps getting
stretched in a manner that is transparent to the application programmer. Such an effect is
simply unthinkable with character arrays.



